Skip to main content
Log in

Visualization of Volumetric Defects in a ZnGeP2 Single-Crystal by Digital Holography Method Using Strontium Vapor Laser Radiation

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

A method for visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation is proposed. The possibility of obtaining a volume distribution of defects with dimensions of ≥15–20 μm and their identification in a crystal is shown. The identification in a ZnGeP2 single-crystal of such volumetric defects as growth bands and needle inclusions of zinc phosphides is carried out. Processing of holographic data has resulted in determination of the periodicity of the formation of growth bands, and evaluation of physical causes leading to the appearance of growth bands with a period of ~10–20 µm, ~25–90 µm, and ~200 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Qian, C.-G., Yao, B.-N., Zhao, B.-R., Liu, G.-Y., Duan, X.-M., Dai, T.-Y., Ju, Y.-L., and Wang, Y.-Z., High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation, Opt. Lett., 2019, vol. 44, pp. 715–718. https://doi.org/10.1364/OL.44.000715

    Article  Google Scholar 

  2. Gribenyukov, A.I., Vatnik, S.M., Demin, V.V., Podzy’valov, S.N., Polovtsev, I.G., and Yudin, N.N., Energy and spectral characteristics of a parametric generator based on a nonlinear ZnGeP2 crystal pumped by a Ho:YAG laser, Quantum Electron., 2018, vol. 48, pp. 603–606. https://doi.org/10.1070/QEL16682

    Article  Google Scholar 

  3. Antipov, O.L., Eranov, I.D., and Kositsyn, R.I., 10-W mid-IR optical parametric oscillators based on ZnGeP2 elements pumped by a fibre-laser-pumped Ho: YAG Laser. Experimental and numerical study, Quantum Electron., 2017, vol. 47, p. 601. https://doi.org/10.1070/QEL16366

    Article  Google Scholar 

  4. Lippert, E., Nicolas, S., Arisholm, G., Stenersen, K., and Rustad, G., Midinfrared laser source with high power and beam quality, Appl. Opt., 2006, vol. 45, p. 3839. https://doi.org/10.1364/AO.45.003839

    Article  Google Scholar 

  5. Bochkovsky, D.A., Vasilyeva, A.V., Matvienko, G.G., Polunin, Yu.P., Romanovsky, O.A., Soldatov, A.N., Kharchenko, O.V., Yudin, N.A., Yakovlev, S.V., The application of a strontium vapor laser to laser sensing of gas composition of the atmosphere, Opt. Atmos. Ocean, 2011, vol. 24, p. 985. https://doi.org/10.1134/S1024856012020054

    Article  Google Scholar 

  6. Soldatov, A.N., Polunin, Yu.P., Vasilyeva, A.V., Kostyrya, I.D., and Kuxgauzen, D.A., Strontium vapor generator-amplifier system for bone ablation, Bio-Technosphere, 2012, vols. 3–4, p. 47.

    Google Scholar 

  7. Hutson, M.S. and Edwards, G.S., Enhanced beam quality for medical applications at 6.45 μm by using a RISTRA ZGP OPO, 26th International Free Electron Laser Conference and 11th FEL User Workshop, 2004, p. 648.

  8. Joos, K.M., Shen, J.H., Shetlar, D.J., and Casagrande, V.A., Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL), Lasers Surg. Med., 2000, vol. 27, p. 191.https://doi.org/10.1002/1096-9101(2000)27:3<191::aid-lsm1>3.0.co;2-d

    Article  Google Scholar 

  9. Mackanos, M.A., Simanovskii, D., Joos, K.M., Schwettman, H.A., and Jansen, E.D., Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL), Lasers Surg. Med., 2007, vol. 39, p. 230. https://doi.org/10.1002/lsm.20461

    Article  Google Scholar 

  10. Telfair, W.B., Bekker, C., Hoffman, H.J., Yoder, P.R., Nordquist, R.E., Eiferman, R.A., and Zenzie, H.H., A new theory and mechanism for mid-infrared corneal ablations, Refract. Surg. J. Photospallation, 2000, vol. 16, p. 40. https://doi.org/10.3928/1081-597X-20000101-13

    Article  Google Scholar 

  11. Gribenyukov, A.I., Dyomin, V.V., Polovtsev, I.G., and Yudin, N.N., Physical approaches to designing a two-cascade terahertz laser generating difference-frequency radiation in a nonlinear optical ZnGeP2 crystal, Russ. Phys. J., 2018, vol. 60, pp. 1980–1986. https://doi.org/10.1007/s11182-018-1311-z

    Article  Google Scholar 

  12. Gribenyukov, A.I., Demin, V.V., Polovtsev, I.G., and Yudin, N.N., Principles of creation of a tunable terahertz laser with lasing at a difference frequency in a nonlinear ZnGeP2 optical crystal, J. Opt. Technol., 2018, vol. 85, pp. 322–325. https://doi.org/10.1364/JOT.85.000322

    Article  Google Scholar 

  13. ISO 10110 Optics and Photonics: Preparation of Drawings for Optical Elements and Systems.

  14. Soldatov, A.N., Sabotinov, N.V., Latush, E.L., Chebotarev, G.D., Vuchkov, N.K., and Yudin, N.A., Strontium and Calcium Vapour Lasers, Sofia: Prof. Marin Drinov Academic Publishing House, 2013, vol. 1.

    Google Scholar 

  15. Nikogosyan, D., Nonlinear Optical Crystals: A Complete Survey, Springer, 2005.

  16. Schnars, U., Digital Hologram Recording, Numerical Reconstruction, and Related Techniques, Springer: Berlin, 2005.

    Google Scholar 

  17. Collier, R., Burkhart, C., and Lin, L., Optical Holography, New York: Acad. Press, 1971.

    Google Scholar 

  18. Dyomin, V.V., Polovcev, I.G., Kamenev, D.V., The internal defects detection in crystals by digital holographic methods, J. Phys.: Conf. Ser., 2016, vol. 737.

  19. Dyomin, V.V., Polovtsev, I.G., Kamenev, D.V., Quality control of ZnGeP2 single crystals using optical methods, Russ. Phys. J., 2016, vol. 58, pp. 1479–1481. https://doi.org/10.1007/s11182-016-0672-4

    Article  Google Scholar 

  20. Thompson, B.J., Holographic particlesizing techniques, J. Phys. E: Sci. Instrum., 1974, vol. 7, pp. 781–788.

    Article  Google Scholar 

  21. Yudin, N.N., Zinoviev, M.M., and Korsakov, V.S., Threshold of optical breakdown of halogen-pre-silver polycrystalline structures under the action of pulsed radiation of Ho:YAG laser, Opt. J., 2019, vol. 86, pp. 64–70. https://doi.org/10.1364/JOT.86.000379

    Article  Google Scholar 

  22. Verozubova, G.A., Okunev, A.O., Gribenyukov, A.I., Trofimiv, A.Yu., Trukhanov, E.M., and Kolesnikov, A.V., Growth and defect structure of ZnGeP2 crystals, J. Cryst. Growth, 2010, vol. 312, pp. 1122–1126. https://doi.org/10.1016/j.jcrysgro.2009.11.009

    Article  Google Scholar 

  23. Carruthers, J.R., Origins of convective temperature oscilations in crystal growth melts, J. Cryst. Growth, 1976, vol. 32, pp. 13–26.

    Article  Google Scholar 

  24. Verozubova, G.A., Gribenyukov, A.I., Korotkova, V.V., and Ruzaikin, M.P., ZnGeP2 synthesis and growth from melt, Mater. Sci. Eng., 1997, vol. B48, pp. l9l–197. https://doi.org/10.1016/S0921-5107(97)00046-9

    Article  Google Scholar 

  25. Verozubova, G.A., Gribenyukov, A.I., and Mironov, Yu.P., Two-temperature synthesis of ZnGeP2, Inorg. Mater., 2007, vol. 43, pp. 1040–1045. https://doi.org/10.1134/S0020168507100020

    Article  Google Scholar 

  26. Verozubova, G.A., Gribenyukov, A.I., Korotkova, V.V., Vere, A.W., and Flinn, C.J., ZnGeP2 growth: Melt non-stoichiometry and defect substructure, J. Crystal Growth, 2002, vols. 237–239, pp. 2000–2004. https://doi.org/10.1016/S0022-0248(01)02303-X

    Article  Google Scholar 

Download references

Funding

This research was supported by Ministry of Science and Higher Education of the Russian Federation, project no. 0721-2020-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Yudin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribenyukov, A.I., Yudin, N.N., Podzyvalov, S.N. et al. Visualization of Volumetric Defects in a ZnGeP2 Single-Crystal by Digital Holography Method Using Strontium Vapor Laser Radiation. Opt. Mem. Neural Networks 29, 147–156 (2020). https://doi.org/10.3103/S1060992X20020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X20020034

Keywords:

Navigation