Skip to main content
Log in

Radiation-Stimulated Transformation of the Reflectance Spectra of Diazoquinone–Novolac Photoresist Films Implanted with Antimony Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We measure the reflectance spectra of 1.8 µm-thick FP9120 photoresist films doped with antimony ions and deposited by centrifugation on the surface of p-type silicon wafers (ρ = 10 Ω cm) with a (111) orientation. Implantation leads to a decrease in the refractive index of the photoresist due to the radiation crosslinking of Novolac resin molecules and a decrease in the molecular refraction and density of the photoresist. In the opacity region of the photoresist film, an increase in the reflection coefficient is observed with an increase in the implantation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. B. A. Lapshinov, Lithographic Process Technology. A Study Guide (MIEM, Moscow, 2011) [in Russian].

    Google Scholar 

  2. A. N. Gentselev, B. G. Gol’denberg, E. V. Petrova, V. F. Pindyurin, and A. S. Kozlov, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 6, 12 (2012). https://doi.org/10.1134/S1027451012010089.

    Article  CAS  Google Scholar 

  3. V. P. Naz’mov, L. A. Mezentseva, V. F. Pindyurin, and V. E. Istomin, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 3, 10 (2001) [in Russian].

  4. A. V. Mitrofanov, O. V. Karban, A. Sugonyako, and M. Lubomska, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 519 (2009). https://doi.org/10.1134/S1027451009040065.

    Article  Google Scholar 

  5. S. A. Vabishchevich, D. I. Brinkevich, V. S. Volobuev, et al., Vestn. Polotsk. Gos. Univ., Ser. C: Fundam. Nauki, No. 9, 74 (2010) [in Russian].

    Google Scholar 

  6. D. I. Brinkevich, S. D. Brinkevich, and M. G. Lukashevich, Russ. Microelectron., 44 (6), 448 (2015). https://doi.org/10.1134/S1063739715060025.

  7. S. A. Bulgakova, M. M. Jons, A. E. Pestov, et al., Russ. Microelectron. 42 (3), 165 (2013). https://doi.org/10.1134/S1063739713020054.

    Article  CAS  Google Scholar 

  8. E. I. Rau, E. N. Evstaf’eva, S. I. Zaitsev, et al., Russ. Microelectron. 42 (2), 89 (2013). https://doi.org/10.1134/S1063739713020091.

    Article  CAS  Google Scholar 

  9. Z. Yu. Gotra, Microelectronic Device Technology: A Reference Book (Radio i svyaz’, Moscow, 1991).

  10. A. A. Harchenko, D. I. Brinkevich, S. D. Brinkevich, M. G. Lukashevich, and V. B. Odzhaev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 87 (2015). https://doi.org/10.1134/S1027451015010103.

    Article  CAS  Google Scholar 

  11. Yu. A. Bumai, N. I. Dolgikh, A. A. Kharchenko, V. F. Valeev, V. I. Nuzhdin, R. I. Khaibullin, F. A. Nazhim, M. G. Lukashevich, and V. B. Odzhaev, Zh. Prikl. Spectrosk., No. 2, 192 (2014). https://doi.org/10.1007/s10812-014-9908-7.

  12. Yu. A. Bumai, N. I. Dolgikh, I. A. Karpovich, et al., Mater., Tekhnol., Instrum., No. 4, 70 (2012) [in Russian].

  13. Yu. A. Bumai, V. S. Volobuev, V. F. Valeev, et al., J. Appl. Spectrosc. 79 (5), 773 (2012). https://doi.org/10.1007/s10812-012-9669-0.

    Article  CAS  Google Scholar 

  14. S. G. Yastrebov, T. Allen, V. I. Ivanov-Omskii, et al., Tech. Phys. Lett. 29 (10), 858 (2003) [in Russian].

    Article  CAS  Google Scholar 

  15. Yu. A. Bumai, D. I. Brinkevich, V. S. Volobuev, N. I. Dolgikh, I. A. Karpovich, and M. G. Lukashevich, Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz., Mat., Inf., No. 3, 41 (2012) [in Russian]. http://elib.bsu.by/handle/123456789/49214.

  16. D. I. Brinkevich, A. A. Kharchenko, S. D. Brinkevich, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (4), 801 (2017). https://doi.org/10.1134/S1027451017040188.

    Article  CAS  Google Scholar 

  17. A. A. Harchenko, D. I. Brinkevich, S. D. Brinkevich, M. G. Lukashevich, and V. B. Odzhaev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 371 (2015). https://doi.org/10.1134/S1027451015020317.

    Article  CAS  Google Scholar 

  18. A. A. Kharchenko, S. D. Shvarkov, E. A. Kolesnik, M. G. Lukashevich, Vestn. Belorus. Gos. Univ., Ser. 1, No. 2, 29 (2012) [in Russian]. http://elib.bsu.by/handle/123456789/44174.

    Google Scholar 

  19. A. A. Askadskii and V. I. Kondrashenko, Computational Material Science of Polymers. Vol. 1. Atom and Molecule Level (Nauchnyi mir, Moscow, 1999) [in Russian].

  20. N. Grassie and G. Scott, Polymer Degradation and Stabilization (Cambridge University Press, Cambridge, 1985; Mir, Moscow, 1988) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kharchenko or D. I. Brinkevich.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharchenko, A.A., Brinkevich, D.I., Prosolovich, V.S. et al. Radiation-Stimulated Transformation of the Reflectance Spectra of Diazoquinone–Novolac Photoresist Films Implanted with Antimony Ions. J. Surf. Investig. 14, 558–561 (2020). https://doi.org/10.1134/S1027451020030283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020030283

Keywords:

Navigation