Skip to main content
Log in

Three-Dimensional Numerical Investigation of Steady State and Physiologically Realistic Pulsatile Flow through the Left Coronary Curved Artery with Stenosis

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Simulation of the behavior of stenosis arteries has received much attention as a research topic. Fluid mechanics of blood flow in the left coronary artery (LCA) with stenosis is studied using a mathematical analysis. Numerical simulations of blood flow in the left coronary artery with different stenosis percentages were performed. Both Newtonian and non-Newtonian models were considered for blood. The flow was assumed to be pulsatile and laminar. Stenotic human coronary artery geometries were given based on the images obtained from real patients (coronarography). The coupled governing equations, continuity and momentum were non-dimensionalized and solved. The effect of stenosis on various physiologically important flow variables during the cardiac cycle including pressure drop, impedance, velocity profile, and wall shear stress (WSS) was studied. It is found that all these flow parameters remarkably vary across a stenotic lesion. Also, an increase in the stenosis percentage leads to a considerable increase in their magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Smedby, O., Do plaques grow upstream or downstream?, Arterioscler., Thromb., Vasc. Biol., 1997, vol. 15, pp. 912–918.

    Article  Google Scholar 

  2. Caro, C.G., Baker, A.J., Fitzgerald, J.M., and Schroter, R.C., Atheroma and arterial wall shear: Observations, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc. R. Soc. London, Ser. B, 1971, vol. 117, pp. 109–159.

    Google Scholar 

  3. Friedman, M.H., Peters, O.J., Bargero, C.B., Hutchins, G.M., and Mark, F.F., Correlation between intimal thickness and fluid shear in human arteries, atherosclerosis, 1981, vol. 39, pp. 425–436.

    Article  CAS  PubMed  Google Scholar 

  4. Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiurai, V., Mabon, R.F., and Glagov, S., Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ. Res., 1983, vol. 53, pp. 502–514. https://doi.org/10.1161/01.RES.53.4.502

    Article  CAS  PubMed  Google Scholar 

  5. Nerem, R.M., Vascular fluid mechanics, the arterial wall, and atherosclerosis, J. Biomech. Eng., 1992, vol. 114, pp. 274–282.

    Article  CAS  PubMed  Google Scholar 

  6. Lou, Z. and Yang, W.J., A computer simulation of the non-Newtonian blood flow at the aortic bifurcation, J. Biomech., 1993, vol. 26, pp. 37–49.

    Article  CAS  PubMed  Google Scholar 

  7. Tu, C. and Deville, M., Pulsatile flow of non-Newtonian fluids through arterial stenoses, J. Biomech., 1996, 29, 899–908. https://doi.org/10.1016/0021-9290(95)00151-4

    Article  CAS  PubMed  Google Scholar 

  8. Zendehbudi, G.R. and Moayeri, M.S., Comparison of physiological and simple pulsatile flows through stenosed arteries, J. Biomech., 1999, vol. 32, pp. 959–965.

    Article  CAS  PubMed  Google Scholar 

  9. Hofer, M., Rappitsch, G., Perktold, K., Turbel, W., and Schima, H., Numerical study of wall mechanics and fluid dynamics in end-toside anastomoses and correlation to intimal hyperplasia, J. Biomech., 1996, vol. 29, pp. 1297–1308.

    Article  CAS  PubMed  Google Scholar 

  10. Santamarina, A., Weydahl, E., Siegel, J.M., Jr., and Moore, J.E., Jr., Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature, Ann. Biomed. Eng., 1998, vol. 26, pp. 944–954.

    Article  CAS  PubMed  Google Scholar 

  11. Weydahl, E.S. and Moore, J.E., Jr., Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model, J. Biomech., 2001, vol. 34, pp. 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, D., Su, J.M., and Liang, H.Y., A numerical simulation of steady flow fields in a bypass tube, J. Biomech., 2001, vol. 34, pp. 1407–1416.

    Article  CAS  PubMed  Google Scholar 

  13. Lu, Y.L., Lu, X.Y., Zhuang, L.X., and Wang, W., Breaking symmetry in non-planar bifurcation: Distribution of flow and wall shear stress, Biorheology, 2002, vol. 39, pp. 431–436.

    PubMed  Google Scholar 

  14. Forrester, J.H. and Young, D.F., Flow through a converging-diverging tube and its implications in occlusive vascular disease, J. Biomech., 1970, vol. 3, pp. 307–316.

    Article  CAS  PubMed  Google Scholar 

  15. Young, D.F. and Tsai, F.Y., Flow characteristics in models of arterial stenoses — I. Steady flow, J. Biomech., 1973, vol. 6, no. 4, pp. 395–410. https://doi.org/10.1016/0021-9290(73)90099-7

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed, S.A. and Giddens, D.P., Velocity measurement in steady flow through axisymmetric stenoses at moderate Reynolds numbers, J. Biomech., 1983, vol. 16, pp. 505–516.

    Article  CAS  PubMed  Google Scholar 

  17. Cavalcanti, S., Bolelli, P., and Belardinelli, E., Pressure drops through arterial stenosis models in steady flow condition, J. Biomech. Eng., 1992, vol. 114, pp. 416–418.

    Article  CAS  PubMed  Google Scholar 

  18. Young, D.F. and Tsai, F.Y., Flow characteristics in models of arterial stenoses — II. Unsteady flow, J. Biomech., 1973, vol. 6, no. 5, pp. 547–559. https://doi.org/10.1016/0021-9290(73)90012-2

    Article  CAS  PubMed  Google Scholar 

  19. Siouffi, M., Pelissier, R., Farahifar, D., and Rieu, R., The effect of unsteadiness on the flow through stenoses and bifurcations, J. Biomech., 1984, vol. 17, pp. 299–315.

    Article  CAS  PubMed  Google Scholar 

  20. Rabinovitz, R., Degani, D., Gutfinger, C., and Milo, S., An experimental study of pressure losses in pulsatile flows through rigid and pulsating stenosis, J. Biomech. Eng., 1984, vol. 106, no. 4, pp. 309–314. https://doi.org/10.1115/1.3138499

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed, S.A. and Giddens, D.P., Pulsatile poststenotic flow studies with laser Doppler anemometry, J. Biomech., 1984, vol. 17, no. 9, pp. 695–705. https://doi.org/10.1016/0021-9290(84)90123-4

    Article  CAS  PubMed  Google Scholar 

  22. Lieber, B.B. and Giddens, D.P., Apparent stresses in disturbed pulsatile flows, J. Biomech., 1988, vol. 21, pp. 287–298.

    Article  CAS  PubMed  Google Scholar 

  23. Rooz, E., Young, D.F., and Rogge, T.R., A finite-element simulation of pulsatile flow in flexible obstructed tubes, J. Biomech. Eng., 1982, vol. 104, no. 2, pp. 119–124. https://doi.org/10.1115/1.3138324

    Article  CAS  PubMed  Google Scholar 

  24. Stergiopulos, N., Spiridon, M., Pythoud, F., and Meister, J.J., On the wave transmission and reflection properties of stenoses, J. Biomech., 1996, vol. 29, pp. 31–38.

    Article  CAS  PubMed  Google Scholar 

  25. Deshpande, M.D., Giddens, D.P., and Mabon, R.F., Steady laminar flow through modeled vascular stenoses, J. Biomech., 1976, vol. 9, pp. 165–174.

    Article  CAS  PubMed  Google Scholar 

  26. Fukushima, T., Azuma, T., and Matsuzawa, T., Numerical analysis of blood flow in the vertebral artery, J. Biomech. Eng., 1982, vol. 104, pp. 143–147.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, T.S., Numerical studies of fluid flow through tubes with double constrictions, Int. J. Numer. Methods Fluids, 1990, vol. 11, no. 8, pp. 1113–1126. https://doi.org/10.1002/fld.1650110805

    Article  Google Scholar 

  28. Siegel, J.M., Markou, C.P., Ku, D.N., and Hanson, S.R., A scaling law for wall shear rate through an arterial stenosis, J. Biomech. Eng., 1994, vol. 116, pp. 446–451.

    Article  CAS  PubMed  Google Scholar 

  29. Scott, P.S., Mirza, F.A., and Vlachopoulos, J., A finite element analysis of laminar viscoplastic flows in systems with flow separation, Numerical Methods in Laminar and Turbulent Flow (Proc. Fifth International Conference, Montreal, 1987), Taylor, C., Habashi, W.G., and Hafez, M.M., Eds., Swansea: Pineridge, 1987, vol. 5, pp. 1178–1189.

  30. Nakamura, M. and Sawada, T., Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis, J. Biomech. Eng., 1988, vol. 110, pp. 137–143.

    Article  CAS  PubMed  Google Scholar 

  31. Hogen, H.A. and Henriksen, M., An evaluation of a micropolar model for blood flow through an idealized stenosis, J. Biomech., 1989, vol. 22, pp. 211–218.

    Article  Google Scholar 

  32. Srivastava, V.P. and Saxena, M., Two-layered model of Casson fluid flow through stenotic blood vessels: Applications to the cardiovascular system, J. Biomech., 1994, vol. 27, no. 7, pp. 921–928. https://doi.org/10.1016/0021-9290(94)90264-X

    Article  CAS  PubMed  Google Scholar 

  33. Moayeri, M.S. and Vali, A., Effects of non-Newtonian properties of blood on flow characteristics through a stenosis, Iran. J. Sci. Technol., 1996, vol. 20, no. 1, pp. 25–43.

    Google Scholar 

  34. Back, L.D., Radbill, J.R., and Crawford, D.W., Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man, J. Biomech., 1977, vol. 10, pp. 339–353.

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien, V. and Ehrlich, L.W., Simple pulsatile flow in an artery with a constriction, J. Biomech., 1985, vol. 18, pp. 117–127.

    Article  PubMed  Google Scholar 

  36. Theodorou, G. and Bellet, D., Laminar flows of a non-Newtonian fluid in mild stenosis, Comput. Methods Appl. Mech. Eng., 1986, vol. 54, no. 1, pp. 111–123. https://doi.org/10.1016/0045-7825(86)90038-1

    Article  Google Scholar 

  37. Kumar, A. and Awasthi, U., A mathematical model for blood flow in a multiple stenosis artery, Int. J. Math. Anal., 2010, vol. 4, no. 50, pp. 2465–2472.

    Google Scholar 

  38. Verma, V.K. and Saraswat, P., Effect of a multiple stenosis on blood flow through a tube, Int. J. Biomed. Biol. Eng., 2013, vol. 7, no. 11, pp. 753–756.

    Google Scholar 

  39. Razavi, A., Shirani, E., and Sadeghi, M.R., Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models, J. Biomech., 2011, vol. 44, no. 11, pp. 2021–2030.

    Article  CAS  PubMed  Google Scholar 

  40. Pedley, T.J., The Fluid Mechanics of Large Blood Vessels, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge: Cambridge Univ. Press, 1980.

  41. Dash, R.K., Jayaraman, G., and Mehta, K.N., Flow in a catheterized curved artery with stenosis, J. Biomech., 1999, vol. 32, pp. 49–61.

    Article  CAS  PubMed  Google Scholar 

  42. Nerem, R.M., Vascular fluid mechanics, the arterial wall, and atherosclerosis, J. Biomech. Eng., 1992, vol. 114, no. 3, pp. 274–282.

    Article  CAS  PubMed  Google Scholar 

  43. González, H.A. and Moraga, N.O., On predicting unsteady non-Newtonian blood flow, Appl. Math. Comput., 2005, vol. 170, no. 2, pp. 909–923. https://doi.org/10.1016/j.amc.2004.12.029

    Article  Google Scholar 

  44. Johnston, B.M., Johnston, P.A., Corney, S., and Kilpatrick, D., Non-Newtonian blood flow in human right coronary arteries: Steady state simulations, J. Biomech., 2004, vol. 37, no. 5, pp. 709–720. https://doi.org/10.1016/j.jbiomech.2003.09.016

    Article  PubMed  Google Scholar 

  45. Back, L.H., Estimated mean flow resistance increase during coronary artery catheterization, J. Biomech., 1994, vol. 27, pp. 169–175.

    Article  CAS  PubMed  Google Scholar 

  46. Back, L.H., Kwack, E.Y., and Back, M.R., Flow rate-pressure drop relation in coronary angioplasty: Catheter obstruction effect, J. Biomech. Eng., 1996, vol. 118, pp. 83–89. https://doi.org/10.1115/1.2795949

    Article  CAS  PubMed  Google Scholar 

  47. Wahle, A., Mitchell, S.C., Ramaswamy, S.D., Chandran, K.B., and Sonka, M., Four-dimensional coronary morphology and computational hemodynamics, Proc. SPIE Medical Imaging 2001: Image Processing, San Diego, 2001, vol. 4322, pp. 743–754. https://doi.org/10.1117/12.431153

  48. Chang, L.J. and Tarbell, J.M, A numerical study of flow in curved tubes simulating coronary arteries, J. Biomech., 1998, vol. 21, pp. 927–937.

    Article  Google Scholar 

  49. Leung, W.H. and Stadius, E.L., Determinants of normal coronary artery dimension in humans, Circulation, 1991, vol. 84, pp. 2294–2306.

    Article  CAS  PubMed  Google Scholar 

  50. Stary, H.C., Atlas of atherosclerosis: Progression and Regression, Encyclopedia of Visual Medicine Series, New York: Parthenon, 1999.

    Book  Google Scholar 

Download references

Funding

This research was supported by a grant from the ACECR Institute of Higher Education (Isfahan Branch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Javanbakht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir Hossain Golshirazi, Etemad, S.G. & Javanbakht, V. Three-Dimensional Numerical Investigation of Steady State and Physiologically Realistic Pulsatile Flow through the Left Coronary Curved Artery with Stenosis. Theor Found Chem Eng 54, 489–499 (2020). https://doi.org/10.1134/S0040579520030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520030045

Keywords:

Navigation