Skip to main content
Log in

Physicochemical Model of Selection of Complex Compounds for Electroless Metal Plating

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A physicochemical model of the choice of a ligand for the electroless deposition of metal–phosphorus alloys is proposed based on determining the conditions for electrochemical reactions that cause the formation of the alloy and minimizing possible side reactions that impede the quality of the deposition process. Based on the physicochemical model, the optimal range of values of the stability constants and pH was determined for electroless nickel plating. It is shown that, for the pH range 7–9, which corresponds to the maximum deposition rates, stability constants take values from 5 to 10; carrying out the process in more alkaline solutions requires the use of more stable complexes. The predictive ability of the model is confirmed by experimental studies of the process of electroless nickel plating from solutions of various ligand compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Encyclopedia of Materials: Science and Technology, Buschow, K.H.J. and Cahn, R.W.A., Eds., Amsterdam: Elsevier, 2001.

    Google Scholar 

  2. Sha, W., Wu, X., and Keong, K.G., Electroless Copper and Nickel–Phosphorus Plating: Processing, Characterisation and Modelling, Cambridge: Woodhead, 2011.

    Book  Google Scholar 

  3. Zhang, H., Zou, J., Lin, N., and Tang, B., Review on electroless plating Ni–P coatings for improving surface performance of steel, Surf. Rev. Lett., 2014, vol. 21, no. 4, p. 1430002. https://doi.org/10.1142/s0218625x14300020

    Article  Google Scholar 

  4. Peeters, P., Hoorn, G.V.D., Daenen, T., Kurowski, A., and Staikov, G., Properties of electroless and electroplated Ni–P and its application in microgalvanics, Electrochim. Acta, 2001, vol. 47, nos. 1–2, p. 161. https://doi.org/10.1016/s0013-4686(01)00546-1

    Article  CAS  Google Scholar 

  5. Chen, B.H., Hong, L., Ma, Y., and Ko, T.M., Effects of surfactants in an electroless nickel-plating bath on the properties of Ni−P alloy deposits, Ind. Eng. Chem. Res., 2002, vol. 41, no. 11, p. 2668. https://doi.org/doi 10.1021/ie0105831

    Article  CAS  Google Scholar 

  6. Shu, X., He, Z., Wang, Y., and Yin, L., Mechanical properties of Ni-based coatings fabricated by electroless plating method, Surf. Eng., 2019, p. 1. https://doi.org/10.1080/02670844.2019.1662226

  7. Dervos, C.T., Novakovic, J., and Vassiliou, P., Electroless Ni-B and Ni-P coatings with high-fretting resistance for electrical contact applications, Proc. 50th IEEE Holm Conf. on Electric. Cont. and the 22nd Int. Conf. on Electr. Cont., Seattle, 2004, p. 1. https://doi.org/10.1109/holm.2004.1353131

  8. Panja, B., Das, S.K., and Sahoo, P., Tribological behavior of electroless Ni–P coatings in various corrosive environments, Surf. Rev. Lett., 2016, vol. 23, no. 5, p. 1650040. https://doi.org/10.1142/s0218625x16500402

    Article  CAS  Google Scholar 

  9. Czagany, M., Baumli, P., and Kaptay, G., The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel, Appl. Surf. Sci., 2017, vol. 423, p. 160. https://doi.org/10.1016/j.apsusc.2017.06.168

    Article  CAS  Google Scholar 

  10. Comprehensive Materials Processing, Hashmi, S., Batalha, G.F., Van Tyne, C.J., and Yilbas, B.S., Eds., Amsterdam: Elsevier, 2014.

  11. McKeen, L.W., Fluorinated Coatings and Finishes Handbook: The Definitive User’s Guide, Series in Plastics Design Library, New York: William Andrew, 2006.

  12. Sudagar, J., Lian, J., and Sha, W., Electroless nickel, alloy, composite and nano coatings – A critical review, J. Alloys Compd., 2013, vol. 571, p. 183. https://doi.org/10.1016/j.jallcom.2013.03.107

    Article  CAS  Google Scholar 

  13. Wang, X.C., Cai, W.B., Wang, W.J., Liu, H.T., and Yu, Z.Z., Effects of ligands on electroless Ni–P alloy plating from alkaline citrate–ammonia solution, Surf. Coat. Technol., 2003, vol. 168, nos. 2–3, p. 300. https://doi.org/10.1016/s0257-8972(03)00013-6

    Article  CAS  Google Scholar 

  14. Omar, R., Aboraia, M.S., Oraby, E.A., Gubner, R., and Rizk, A.E., The effect of sodium citrate as a complex agent on the corrosion properties of the electroless Ni-P coating, Mater. Res. Express, 2018, vol. 5, no. 12, p. 126. https://doi.org/10.1088/2053-1591/aae0b9

    Article  CAS  Google Scholar 

  15. Ashtiani, A.A., Faraji, S., Iranagh, S.A., and Faraji, A.H., The study of electroless Ni–P alloys with different complexing agents on Ck45 steel substrate, Arabian J. Chem., 2017, vol. 10, p. 1541.

    Article  Google Scholar 

  16. Jin, Y., Yu, H., Yang, D., and Sun, D., Effects of complexing agents on acidic electroless nickel deposition, Rare Met. (Beijing, China), 2010, vol. 29, no. 4, p. 401. https://doi.org/10.1007/s12598-010-0138-8

    Article  CAS  Google Scholar 

  17. Elhaloui, A., Anik, T., Ebn, TouhamiM., Shaim, A., Iaych, K., Touir, R., Sfaira, M., Mcharfi, M., and Hammouti, B., Investigation of ammonium acetate effect on electroless Ni–P deposits, J. Mater. Environ. Sci., 2015, vol. 6, no. 7, p. 2028.

    CAS  Google Scholar 

  18. Mayanna, S.M., Ramesh, L., and Sheshadri, B.S., Electroless nickel plating—Influence of mixed ligands, Trans. IMF, 1996, vol. 74, no. 2, p. 66. https://doi.org/10.1080/00202967.1996.11871097

    Article  CAS  Google Scholar 

  19. Tarozaite, R. and Gilene, O., Regenerated citrate solution for electroless nickel plating, Tekhnol. Konstr. Elektron. Appar., 2002, nos. 4–5, p. 43.

  20. Vinokurov, E.G., Demidov, A.V., and Bondar, V.V., Logistic model of ligand selection for chromium-plating electrolytes based on Cr(III) complexes, Russ. J. Coord. Chem., 2004, vol. 30, no. 11, p. 774.

    Article  CAS  Google Scholar 

  21. Kuznetsov, V.V., Golyanin, K.E., Ladygina, Y.S., Pshenichkina, T.V., Lyakhov, B.F., and Pokholok, K.V., Electrodeposition of iron–molybdenum alloy from ammonium–citrate solutions and properties of produced materials, Russ. J. Electrochem., 2015, vol. 51, no. 8, p. 748.

    Article  CAS  Google Scholar 

  22. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Electrodeposition of zinc–nickel coatings from ammonium oxalate solutions, Gal’vanotekh. Obrab. Poverkhn., 2019, vol. 27, no. 1, p. 4.

    Google Scholar 

  23. Vinokurov, E.G., Kuznetsov, V.V., and Bondar’, V.V., Aqueous solutions of Cr(III) sulfate: Modeling of equilibrium composition and physicochemical properties, Russ. J. Coord. Chem., 2004, vol. 30, no. 7, p. 496. https://doi.org/10.1023/B:RUCO.0000034791.29424.1b

    Article  CAS  Google Scholar 

  24. Vinokurov, E.G., Thermodynamic probability model of ligand selection in solutions designed for electrodeposition of alloys and multivalent metals, Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, p. 615.

    Article  CAS  Google Scholar 

  25. Vinokurov, E.G., Demidov, A.V., and Bondar’, V.V., Physicochemical model for choosing complexes for chromium-plating solutions based on Cr(III) compounds, Russ. J. Coord. Chem., 2005, vol. 31, no. 1, p. 14.

    Article  CAS  Google Scholar 

  26. Vinokurov, E.G. and Bondar’, V.V., Logistic model for choosing ligands for alloy electrodeposition, Theor. Found. Chem. Eng., 2007, vol. 41, no. 4, p. 384.

    Article  CAS  Google Scholar 

  27. Vinokurov, E.G., Burukhina, T.F., and Bondar, V.V., Mathematical model for choosing the preferable range of concentrations of ligands as components of solutions for alloy electrodeposition, Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, p. 338.

    Article  CAS  Google Scholar 

  28. Sotskaya, N.V., Aristov, I.V., Goncharova, L.G., and Kravchenko, T.A., Simulation of electroless plating of nickel with sodium hypophosphite, Russ. J. Appl. Chem., 1997, vol. 70, no. 3, p. 407.

    Google Scholar 

  29. Vinokurov, E.G., Mukhametova, G.M., Vasil’ev, V.V., Burukhina, T.F., and Skopintsev, V.D., Influence of characteristics of nickel complex compounds on the rate of chemical deposition and composition of nickel–phosphorus alloy, Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, p. 544. https://doi.org/10.1134/S0040579519040286

    Article  CAS  Google Scholar 

  30. Vinokurov, E.G. and Bondar’, V.V., Model’nye predstavleniya dlya opisaniya i prognozirovaniya elektroosazhdeniya splavov (Model Representations for Describing and Predicting Alloy Electrodeposition), Moscow: VINITI, 2009.

  31. Skopintsev, V.D., Morgunov, A.V., Vinokurov, E.G., and Nevmyatullina, Kh.A., Increasing the production rate of electroless nickel plating, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, p. 26.

    Google Scholar 

  32. Vinokurov, E.G. and Bondar’, V.V., Prediction of stability constants for Cr(III) and Cr(II) complexes, Russ. J. Coord. Chem., 2003, vol. 29, no. 1, p. 66.

    Article  CAS  Google Scholar 

  33. Spravochnik po elektrokhimii (Electrochemistry Handbook), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  34. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971.

  35. Lunyatskas, A.M., Tr.Akad. Nauk Lit. SSR,Ser.: Khim. Khim. Tekhnol., 1965, vol. 4, p. 43.

    Google Scholar 

  36. Perrin, D.D., Stability Constants of Metal-Ion Complexes: Part B. Organic Ligands, Oxford: Pergamon, 1983.

    Google Scholar 

  37. Skopintsev, V.D. and Vinokurov, E.G., Teoreticheskie i prikladnye aspekty avtokataliticheskogo formirovaniya pokrytii na osnove splava nikel'–fosfor (Theoretical and Applied Aspects of the Autocatalytic Formation of Coatings Based on the Nickel–Phosphorus Alloy), Moscow: VINITI, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. G. Vinokurov or T. F. Burukhina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, E.G., Mukhametova, G.M., Burukhina, T.F. et al. Physicochemical Model of Selection of Complex Compounds for Electroless Metal Plating. Theor Found Chem Eng 54, 474–481 (2020). https://doi.org/10.1134/S0040579520030136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520030136

Keywords:

Navigation