Skip to main content
Log in

Design of Dielectric Barrier Discharge Reactor and Simulation of Purification Processes of Aqueous Solutions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The design of an installation for the atmospheric-pressure dielectric-barrier discharge for water purification from organic contaminants is considered. The reactor design, the sequence of calculating the main physical parameters of barrier discharge in oxygen, and the method for determining the chemical composition of an aqueous solution containing an organic pollutant (formaldehyde was taken as an example) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ziyatdinov, N.N., Modeling and optimization of chemical engineering processes and systems, Theor. Found. Chem. Eng., 2017, vol. 51, no. 6, pp. 889–892. https://doi.org/10.1134/S0040579517060197

    Article  CAS  Google Scholar 

  2. Shutov, D.A. and Rybkin, V.V., Electric discharges of atmospheric pressure as a means of chemical activation of aqueous solutions, Tezisy dokladov Vserossiiskoi (s mezhdunarodnym uchastiem) konferentsii “Fizika nizkotemperaturnoi plazmy—FNTP-2017” (Abstracts of Papers Presented at the All-Russian Conference with International Participation “The Physics of Low-Temperature Plasma—PLTP-2017”), Kazan: Otechestvo, 2017, p. 214.

  3. Makal’skii, L.M. and Tsekhanovich, O.M., The use of avalanche-streamer discharges for wastewater treatment, Vestn. Volgogr. Gos. Univ., Ser. 11:Estestv. Nauki, 2017, vol. 7, no. 2, p. 12.

    Google Scholar 

  4. Bruggeman, P. and Leys, C., Non-thermal plasmas in and in contact with liquids, J. Phys. D: Appl. Phys., 2009, vol. 42, no. 5, article no. 053001. https://doi.org/10.1088/0022-3727/42/5/053001

    Article  CAS  Google Scholar 

  5. Mezei, P., Electrolyte cathode atmospheric glow discharges for direct solution analysis, Appl. Spectrosc. Rev., 2007, vol. 42, no. 6, p. 573.

    Article  CAS  Google Scholar 

  6. Burlica, R., Kirkpatrick, M.J., Finney, W.C., Clark, R.J., and Locke, B.R., Organic dye removal from aqueous solution by glidarc discharges, J. Electrost., 2004, vol. 62, no. 4, pp. 309–321. https://doi.org/10.1016/j.elstat.2004.05.007

    Article  CAS  Google Scholar 

  7. Malik, M.A. and Schoenbach, K.H., New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure, J. Phys. D: Appl. Phys., 2012, vol. 45, no. 13, article no. 132001. https://doi.org/10.1088/0022-3727/45/13/132001

    Article  CAS  Google Scholar 

  8. Bubnov, A.G., Grinevich, V.I., Maslova, O.N., and Rybkin, V.V., Application of barrier discharge to the treatment of water from phenol: Reactor thermal characteristics, Theor. Found. Chem. Eng., 2007, vol. 41, no. 4, pp. 396–400. https://doi.org/10.1134/S0040579507040094

    Article  CAS  Google Scholar 

  9. Singh, R., Gangal, U., and Sen-Gupta, S., Effects of alkaline ferrocyanide on non-faradaic yields of anodic contact glow discharge electrolysis: Determination of the primary yield of OH-radicals, Plasma Chem. Plasma Process., 2012, vol. 33, no. 3, p. 609.

    Article  Google Scholar 

  10. Zakharov, A.G., Maksimov, A.I., and Titova, Yu.V., Physicochemical properties of plasma–solution systems and prospects for their use in technology, Russ. Chem. Rev., 2007, vol. 76, no. 3, pp. 235– 252. https://doi.org/10.1070/RC2007v076n03ABEH003638

    Article  CAS  Google Scholar 

  11. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 2007.

    Google Scholar 

  12. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  13. Bobkova, E.S., Scientific fundamentals of low-temperature plasma processes for the decomposition of organic compounds dissolved in water, Doctoral (Chem.) Dissertation, Ivanovo: Ivanovo State Univ. of Chemistry and Technology, 2015.

  14. Bobkova, E.S., Isakina, A.A., Shishkin, A.I., Kuznets, N.N., and Morev, A.M., Features of phenol degradation in aqueous solution in dielectric-barrier discharge in oxygen, High Energy Chem., 2015, vol. 49, no. 1, pp. 68–71. https://doi.org/10.1134/S0018143915010038

    Article  CAS  Google Scholar 

  15. Bobkova, E.S., Plasma purification of wastewater containing surface-active substances, Voda: Khim. Ekol., 2017, no. 9, pp. 37–43.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Bobkova.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkova, E.S. Design of Dielectric Barrier Discharge Reactor and Simulation of Purification Processes of Aqueous Solutions. Theor Found Chem Eng 54, 500–505 (2020). https://doi.org/10.1134/S0040579520020013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520020013

Keywords:

Navigation