Skip to main content
Log in

A simple model of porous media with elastic deformations and erosion or deposition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with a model for solids with porous channels filled by an incompressible isotropic fluid. The Darcy–Brinkman–Stokes law is derived, that represents a rate equation for the local mass flux of the fluid, presenting relaxation times in which this flux evolves towards its local-equilibrium value, viscous effects and a permeability tensor referring to a response of the system to an external agent, i.e. the fluid flow produced by a pressure gradient. The erosion/deposition phenomena in an elastic porous matrix are also studied and particular thermal porous metamaterials, that have interesting functionality, like in fluid flow cloaking, are illustrated as application of the obtained results. This derived model is completely in agreement with a theory formulated in the framework of the rational irreversible thermodynamics, where two internal variables are introduced (a symmetric structural porosity tensor and a symmetric second order tensor influencing viscous phenomena, that is interpreted as the symmetric part of the velocity gradient), when the results are considered in a first approximation and some suitable assumptions are done. The constitutive theory is worked out by using Liu’s and Wang’s theorems. The obtained theory has applications in several technological sectors, like physics of soil, pharmaceutics, physiology, etc., and contributes to the study of new porous metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Restuccia, L.: A thermodynamical model for fluid flow through porous solids. Rend. Circolo Mat. Palermo 77, 1–15 (2005)

    Google Scholar 

  2. Restuccia, L.: Thermomechanics of porous solids filled by fluid flow. In: De Bernardis, E., Spigler, R., Valente, V. (eds.) Series on Advances in Mathematics for Applied Sciences, Applied and Industrial Mathematics in Italy III, vol. 82, pp. 485–495. World Scientific, Singapore (2010)

    Google Scholar 

  3. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Lebon, G., Casas-Vázquez, J., Jou, D.: Understanding Non-equilibrium Thermodynamics: Foundations. Applications, Frontiers, Springer, Berlin (2008)

    Book  Google Scholar 

  5. Jou, D., Casas-Vázquez, J., Criado-Sancho, M.: Thermodynamics of Fluids Under Flow, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Jou, D., Restuccia, L.: Mesoscopic transport equations and contemporary thermodynamics: an Introduction. Contemp. Phys. 52, 465–474 (2011)

    Article  Google Scholar 

  7. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1961)

    MATH  Google Scholar 

  8. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam and Interscience Publishers Inc., New York (1962)

    MATH  Google Scholar 

  9. Kluitenberg, G.A.: Plasticity and Non-equilibrium Thermodynamics. CISM Lecture Notes. Springer, New York (1984)

    Google Scholar 

  10. Maugin, G.A.: The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69, 79–86 (2015)

    Article  Google Scholar 

  11. Kröner, E.: Defects as internal variables. In: Internal Variables in Thermodynamics and Continuum Mechanics, CISM Lecture Notes, Udine, July 11–15 (1988)

  12. Berezovski, A., Ván, P.: Internal Variables in Thermoelasticity. Springer, New York (2017)

    Book  Google Scholar 

  13. Restuccia, L., Palese, L., Caccamo, M.T., Famà, A.: Heat equation for porous nanostructures filled by a fluid flow. Atti della Accad. Pelorit. Pericol. 97(S2), 1–16 (2019). https://doi.org/10.1478/AAPP.97S2A6

    Article  Google Scholar 

  14. Restuccia, L., Palese, L., Caccamo, M.T., Famà, A.: A description of anisotropic porous nanocrystals filled by a fluid flow in the framework of extended thermodynamics with internal variables. The Publishing House Proceedings of the Romanian Academy, Series A. 21(2), 123–130 (2020)

    MathSciNet  Google Scholar 

  15. Famà, A., Restuccia, L.: Propagation of coupled porosity and fluid-concentration waves in isotropic porous media. Electron. J. Differ. Equ. 2020, 1–16 (2020). http://ejde.math.txstate.edu or http://ejde.math.unt.edu

  16. Kubik, J.: A macroscopic description of geometrical pore structure of porous solids. Int. J. Eng. Sci. 24, 971–980 (1986)

    Article  Google Scholar 

  17. Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: On the effective viscosity for the Darcy–Brinkman equation. Physica A 385, 69–79 (2007). https://doi.org/10.1016/j.physa.2007.06.012

    Article  MathSciNet  Google Scholar 

  18. Lamberti, G., Galdi, I., Barba, A.A.: Controlled release from hydrogel-based solid matrices: a model accounting for water up-take, swelling and erosion. Int. J. Pharm. 407, 78–86 (2011). https://doi.org/10.1016/j.ijpharm.2011.01.023

    Article  Google Scholar 

  19. Wang, Y.-F., Liang, J.-W., Chen, A.-L., Wang, Y.-S., Laude, V.: Wave propagation in one-dimensional fluid-saturated porous metamaterials. Phys. Rev. B 99, 134304 (2019). https://doi.org/10.1103/PhysRevB.99.134304

    Article  Google Scholar 

  20. Amireddy, K.K., Balasubramaniam, K., Rajagopal, P.: Porous metamaterials for deep sub-wavelength ultrasonic imaging. Appl. Phys. Lett. 113, 124102 (2018). https://doi.org/10.1063/1.5045087

    Article  Google Scholar 

  21. Uhlířová, T., Pabst, W.: Conductivity and Young’s modulus of porous metamaterials based on Gibson–Ashby cells. Scr. Mater. 159, 1–4 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.005

    Article  Google Scholar 

  22. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, vol. 159. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  23. Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. 832, 43–59 (1982). https://doi.org/10.1098/rspa.1982.0088

    Article  Google Scholar 

  24. Lewińska, M.A., van Dommelen, J.A.W., Kouznetsova, V.G., Geers, M.G.D.: Towards acoustic metafoams: the enhanced performance of a poroelastic material with local resonators. J. Mech. Phys. Solids 124, 189–205 (2019). https://doi.org/10.1016/j.jmps.2018.10.006

    Article  MathSciNet  Google Scholar 

  25. I-Shih, Liu: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    Article  MathSciNet  Google Scholar 

  26. Wang, C.C.: A new representation theorem for isotropic functions: an answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions (Part I). Arch. Ration. Mech. Anal. 36, 166–197 (1970)

    Article  Google Scholar 

  27. Wang, C.C.: A new representation theorem for isotropic functions: an answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions (Part II). Arch. Ration. Mech. Anal. 43, 198–223 (1970). https://doi.org/10.1007/bf00272242

    Article  MATH  Google Scholar 

  28. Wang, C.C.: Corrigendum to my recent papers on “Representations for isotropic functions”. Arch. Ration. Mech. Anal. 43, 392–395 (1971). https://doi.org/10.1007/bf00252004

    Article  Google Scholar 

  29. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971). https://doi.org/10.1016/0020-7225(71)90023-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Guyer, R., Krumhansl, J.: Solution on the linearised Boltzmann phonon equation I. Phys. Rev. 148, 766–778 (1966)

    Article  Google Scholar 

  31. Guyer, R., Krumhansl, J.: Solution on the linearised Boltzmann phonon equation II. Phys. Rev. 148, 778–788 (1966)

    Article  Google Scholar 

  32. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal material. Phys. Rev. Lett. 108, 214303 (2012). https://doi.org/10.1103/PhysRevLett.108.214303

    Article  Google Scholar 

  33. Nguyen, D.M., Xu, H., Zhang, Y., Zhang, B.: Active thermal cloak. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4930989

    Article  Google Scholar 

  34. Dede, E.M., Nomura, T., Schmalenberg, P., Lee, J.S.: Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects. Appl. Phys. Lett. 103, 063501 (2013). https://doi.org/10.1063/1.4816775

    Article  Google Scholar 

  35. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013). https://doi.org/10.1103/PhysRevLett.110.195901

    Article  Google Scholar 

  36. Muschik, W., Restuccia, L.: Changing the observer and moving materials in continuum physics: objectivity and frame-indifference. Tech. Mech. 22, 152–160 (2002)

    Google Scholar 

  37. Muschik, W., Restuccia, L.: Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example. Arch. Appl. Mech. 78, 837–858 (2008)

    Article  Google Scholar 

  38. Hermann, H., Muschik, W., Ruckner, G., Restuccia, L.: Constitutive mappings and the non-objective part of material frame indifference. In: Maruszewski, B.T., Muschik, W., Radowicz, A. (eds.) Trends in Continuum Physics TRECOP’04, pp. 126–128. Poznan University of Technology, Poznan (2004)

    Google Scholar 

  39. Müller, I.: Thermodynamics. Pitman Advanced Publishing Program, Boston (1985)

    MATH  Google Scholar 

Download references

Acknowledgements

D. J. acknowledges the financial support of the University of Messina, by the resolution of the Academic Senate, dated 23/07/2018, Protocol numbers 56199 and 56210, for two months stay in the university, April and June, as visiting researcher. He also acknowledges the financial support of the Ministerio de Economia y competitividade of the Spanish Government under grant RTI-2018-097876-B-C22 and of the Direccio General de Recerca of the Generalitat of Catalunya, under grant 2017 SGR-1018. L. R. and A. F. acknowledge the support of “National Group of Mathematical Physics, GNFM-INdAM”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Objective representation of scalar functions

Following [26,27,28] a scalar objective function f,  that depends on m scalar function, namely \(a_1\), \(a_2\),...,\(a_m\) and l second-order symmetric tensors, namely \(\textit{\textbf{A}}_1\), \(\textit{\textbf{A}}_2\),...,\(\textit{\textbf{A}}_l\), is represented as function of the following quantities, called invariants

$$\begin{aligned} a_s, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{A}}_i, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{A}}^2_i, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{A}}^3_i, \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}_i\textit{\textbf{A}}_j), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}^2_i\textit{\textbf{A}}_j), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}^2_i\textit{\textbf{A}}^2_j), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}_i\textit{\textbf{A}}_j\textit{\textbf{A}}_k), \end{aligned}$$
(79)

with \(s=1,\ldots ,m\), \(i,j,k=1,\ldots ,l\) and \(i\ne j\ne k\).

Thus, we have

$$\begin{aligned} f=f\Big (a_s, {{\,\mathrm{tr}\,}}\textit{\textbf{A}}_i, {{\,\mathrm{tr}\,}}\textit{\textbf{A}}^2_i, {{\,\mathrm{tr}\,}}\textit{\textbf{A}}^3_i, {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}_i\textit{\textbf{A}}_j), {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}^2_i\textit{\textbf{A}}_j), {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}^2_i\textit{\textbf{A}}^2_j), {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}_i\textit{\textbf{A}}_j\textit{\textbf{A}}_k)\Big ), \end{aligned}$$
(80)

If we consider the scalar constitutive function \(S=S(T,\varvec{\varepsilon },\textit{\textbf{m}},\textit{\textbf{r}})\) of our theoretical model we have \(m=1, \) with \(a_1\equiv T\), and \(l=3\), with \(\textit{\textbf{A}}_1\equiv \varvec{\varepsilon }\), \(\textit{\textbf{A}}_2\equiv \textit{\textbf{m}}\), \(\textit{\textbf{A}}_3\equiv \textit{\textbf{r}}\).

Then, we have \(s=1\), \(i,j,k=1,2,3\) and \(i\ne j\ne k\) and the invariants for the entropy S are

$$\begin{aligned} \begin{aligned}&T, \quad {{\,\mathrm{tr}\,}}\varvec{\varepsilon }, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{m}}, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{r}}, \quad {{\,\mathrm{tr}\,}}\varvec{\varepsilon }^2, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{m}}^2, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{r}}^2, \quad {{\,\mathrm{tr}\,}}\varvec{\varepsilon }^3, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{m}}^3, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{r}}^3, \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{m}}), \\&{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{m}}), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\varvec{\varepsilon }), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{r}}^2\varvec{\varepsilon }), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{r}}^2\textit{\textbf{m}}), \\&{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{m}}^2), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{r}}^2), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\textit{\textbf{r}}^2), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{m}}\textit{\textbf{r}}), \end{aligned} \end{aligned}$$
(81)

or in Cartesian components

$$\begin{aligned} \begin{aligned}&T, \quad \varepsilon _{ii}, \quad m_{ii}, \quad r_{ii}, \quad \varepsilon _{ij}\varepsilon _{ji}, \quad m_{ij}m_{ji}, \quad r_{ij}r_{ji}, \quad \varepsilon _{ij}\varepsilon _{jk}\varepsilon _{ki}, \quad m_{ij}m_{jk}m_{ki}, \quad r_{ij}r_{jk}r_{ki}, \quad \varepsilon _{ij}m_{ji}, \\&\varepsilon _{ij}r_{ji}, \quad m_{ij}r_{ji}, \quad \varepsilon _{ij}\varepsilon _{jk}m_{ki}, \quad \varepsilon _{ij}\varepsilon _{jk}r_{ki}, \quad m_{ij}m_{jk}\varepsilon _{ki}, \quad m_{ij}m_{jk}r_{ki}, \quad r_{ij}r_{jk}\varepsilon _{ki}, \quad r_{ij}r_{jk}m_{ki}, \\&\varepsilon _{ij}\varepsilon _{jk}m_{kl}m_{li}, \quad \varepsilon _{ij}\varepsilon _{jk}r_{kl}r_{li}, \quad m_{ij}m_{jk}r_{kl}r_{li}, \quad \varepsilon _{ij}m_{jk}r_{ki}. \end{aligned} \end{aligned}$$
(82)

Being \(\varvec{\varepsilon }\), \(\textit{\textbf{m}}\) and \(\textit{\textbf{r}}\) symmetric tensors, it is also possible to write, for instance, \(\varepsilon _{ij}\varepsilon _{ji}=\varepsilon _{ij}\varepsilon _{ij}\), \(m_{ij}r_{ji}=m_{ij}r_{ij}\).

Assuming for S a polynomial form, S may be expressed in the form

$$\begin{aligned} \begin{aligned} S&= S^1T+S^2{{\,\mathrm{tr}\,}}\varvec{\varepsilon }+S^3{{\,\mathrm{tr}\,}}\textit{\textbf{m}}+S^4{{\,\mathrm{tr}\,}}\textit{\textbf{r}}+S^5{{\,\mathrm{tr}\,}}\varvec{\varepsilon }^2+S^6{{\,\mathrm{tr}\,}}\textit{\textbf{m}}^2+S^7{{\,\mathrm{tr}\,}}\textit{\textbf{r}}^2+S^8 {{\,\mathrm{tr}\,}}\varvec{\varepsilon }^3+S^9{{\,\mathrm{tr}\,}}\textit{\textbf{m}}^3 \\&\quad +S^{10}{{\,\mathrm{tr}\,}}\textit{\textbf{r}}^3+S^{11} {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{m}})+S^{12}{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{r}})+S^{13}{{\,\mathrm{tr}\,}}(\textit{\textbf{m}}\textit{\textbf{r}})+S^{14}{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{m}})+S^{15}{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{r}})\\&\quad +S^{16}{{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\varvec{\varepsilon }) +S^{17}{{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\textit{\textbf{r}})+S^{18} {{\,\mathrm{tr}\,}}(\textit{\textbf{r}}^2\varvec{\varepsilon })+S^{19}{{\,\mathrm{tr}\,}}(\textit{\textbf{r}}^2\textit{\textbf{m}})+S^{20} {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{m}}^2)\\&\quad +S^{21}{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{r}}^2)+S^{22}{{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\textit{\textbf{r}}^2)+S^{23}{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{m}}\textit{\textbf{r}}), \end{aligned} \end{aligned}$$
(83)

with \(S^\alpha =S^\alpha (T,\varvec{\varepsilon },\textit{\textbf{m}},\textit{\textbf{r}})\), \(\alpha =1,\ldots ,4\) objective scalar functions, and then depending on the invariants (81). The expression (69) is a first approximated form of (83), being \(\textit{\textbf{m}}=\varvec{\dot{\varepsilon }}\).

Appendix B: Objective representation of symmetric tensor functions

In this Appendix, we consider two situations: (a) a first case where a second-order symmetric objective tensor depends on scalar functions and second-order symmetric tensors; (b) a second case where a second-order symmetric objective tensor depends on scalar functions, second-order symmetric tensors and polar vectors.

Case (a) Following [26,27,28] and [29] a second-order symmetric tensor \(\textit{\textbf{H}},\) that depends on m scalar functions, namely \(a_1\), \(a_2\),...,\(a_m\) (in the case of the pressure tensor \(\textit{\textbf{P}}\), \(m=1\) and \(a_1\equiv T\)), and l second-order symmetric tensors, namely \(\textit{\textbf{A}}_1\), \(\textit{\textbf{A}}_2\),..., \(\textit{\textbf{A}}_l\) (in our case \(l=3\) and \(\textit{\textbf{A}}_1\equiv \varvec{\varepsilon }\), \(\textit{\textbf{A}}_2\equiv \textit{\textbf{m}}\), \(\textit{\textbf{A}}_3\equiv \textit{\textbf{r}}\)), is expressed as polynomial form constructed on the following invariants

$$\begin{aligned} \textit{\textbf{U}}, \quad \textit{\textbf{A}}_i, \quad \textit{\textbf{A}}^2_i, \quad \textit{\textbf{A}}_i\textit{\textbf{A}}_j+\textit{\textbf{A}}_j\textit{\textbf{A}}_i, \quad \textit{\textbf{A}}^2_i\textit{\textbf{A}}_j+\textit{\textbf{A}}_j\textit{\textbf{A}}^2_i, \quad \textit{\textbf{A}}^2_i\textit{\textbf{A}}^2_j+\textit{\textbf{A}}^2_j\textit{\textbf{A}}^2_i, \end{aligned}$$
(84)

with \(i,j=1,\ldots ,l\) and \(i\ne j\), i.e.

$$\begin{aligned} \textit{\textbf{H}}=\sum _{\alpha =1}^rH^\alpha \textit{\textbf{H}}_\alpha , \end{aligned}$$
(85)

where \(H^\alpha =H^\alpha (a_1,a_2,\ldots ,a_m, \textit{\textbf{A}}_1, \textit{\textbf{A}}_2,\ldots ,\textit{\textbf{A}}_l)\), \(\alpha =1,\ldots ,r\), are objective scalar functions (depending on the invariants (79)) and \(\textit{\textbf{H}}_\alpha \) are built on the set of invariants of the list (84).

Thus, for \(\textit{\textbf{P}}=\textit{\textbf{P}}(T,\varvec{\varepsilon },\textit{\textbf{m}},\textit{\textbf{r}})\) they are

$$\begin{aligned} \begin{aligned}&\textit{\textbf{U}}, \quad \varvec{\varepsilon }, \quad \textit{\textbf{m}}, \quad \textit{\textbf{r}}, \quad \varvec{\varepsilon }^2, \quad \textit{\textbf{m}}^2, \quad \textit{\textbf{r}}^2, \quad \varvec{\varepsilon }\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }, \quad \varvec{\varepsilon }\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }, \quad \textit{\textbf{m}}\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}, \\&\varvec{\varepsilon }^2\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }^2, \quad \varvec{\varepsilon }^2\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }^2, \quad \textit{\textbf{m}}^2\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}^2, \quad \textit{\textbf{m}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{m}}^2, \quad \textit{\textbf{r}}^2\textit{\textbf{m}}+\textit{\textbf{m}}\textit{\textbf{r}}^2, \\&\textit{\textbf{r}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{r}}^2, \quad \varvec{\varepsilon }^2\textit{\textbf{m}}^2+\textit{\textbf{m}}^2\varvec{\varepsilon }^2, \quad \varvec{\varepsilon }^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\varvec{\varepsilon }^2, \quad \textit{\textbf{m}}^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\textit{\textbf{m}}^2, \end{aligned} \end{aligned}$$
(86)

where, for instance \(\varvec{\varepsilon }^2\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }^2\equiv (\varepsilon _{ik}\varepsilon _{kl}m_{lj}+m_{ik}\varepsilon _{kl}\varepsilon _{lj})\), \(\varvec{\varepsilon }^2\textit{\textbf{m}}^2+\textit{\textbf{m}}^2\varvec{\varepsilon }^2\equiv (\varepsilon _{ik}\varepsilon _{kl}m_{lp}m_{pj}+m_{ik}m_{kl}\varepsilon _{lp}\varepsilon _{pj}).\) Thus, according to (85) the general form of \(\textit{\textbf{P}}\) is

$$\begin{aligned} \begin{aligned} \textit{\textbf{P}}&= P^1\textit{\textbf{U}}+P^2\varvec{\varepsilon }+P^3\textit{\textbf{m}}+P^4\textit{\textbf{r}}+P^5\varvec{\varepsilon }^2+P^6\textit{\textbf{m}}^2+P^7\textit{\textbf{r}}^2+P^8(\varvec{\varepsilon }\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon })+P^9(\varvec{\varepsilon }\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }. \\&\quad +P^{10}(\textit{\textbf{m}}\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}})+P^{11}(\varvec{\varepsilon }^2\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }^2)++P^{12}(\varvec{\varepsilon }^2\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }^2)+P^{13}(\textit{\textbf{m}}^2\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}^2) \\&\quad +P^{14}(\textit{\textbf{m}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{m}}^2)+P^{15}(\textit{\textbf{r}}^2\textit{\textbf{m}}+\textit{\textbf{m}}\textit{\textbf{r}}^2)+P^{16}(\textit{\textbf{r}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{r}}^2)+P^{17}(\varvec{\varepsilon }^2\textit{\textbf{m}}^2+\textit{\textbf{m}}^2\varvec{\varepsilon }^2) \\&\quad +P^{18}(\varvec{\varepsilon }^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\varvec{\varepsilon }^2)+P^{19}(\textit{\textbf{m}}^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\textit{\textbf{m}}^2), \end{aligned} \end{aligned}$$
(87)

where \(P^\alpha =P^\alpha (T,\varvec{\varepsilon },\textit{\textbf{m}},\textit{\textbf{r}})\), \(\alpha =1,\ldots ,19\), are objective scalar functions (and than depending on the invariants (81)). The expression (70) is a first approximated form of (87), with \(\textit{\textbf{m}}=\varvec{\dot{\varepsilon }}\).

Case (b) Following [26,27,28] and [29] in the case where the second-order symmetric tensor \(\textit{\textbf{H}}\) depends also on a vector \(\textit{\textbf{w}}\) (as in the case of \(\varvec{\mathcal {M}}\) and \(\varvec{\mathcal {R}}^{(i)}\), with \(\textit{\textbf{w}}\equiv \nabla T\)), it is expressed as polynomial of the form (85), with \(\textit{\textbf{H}}^\alpha \) the following invariants

$$\begin{aligned} \begin{aligned}&\textit{\textbf{U}}, \quad \textit{\textbf{A}}_i, \quad \textit{\textbf{A}}^2_i, \quad \textit{\textbf{A}}_i\textit{\textbf{A}}_j+\textit{\textbf{A}}_j\textit{\textbf{A}}_i, \quad \textit{\textbf{A}}^2_i\textit{\textbf{A}}_j+\textit{\textbf{A}}_j\textit{\textbf{A}}^2_i, \quad \textit{\textbf{A}}^2_i\textit{\textbf{A}}^2_j+\textit{\textbf{A}}^2_j\textit{\textbf{A}}^2_i, \\&\textit{\textbf{w}}\otimes \textit{\textbf{w}}, \quad \textit{\textbf{w}}\otimes (\textit{\textbf{A}}_i\textit{\textbf{w}})+(\textit{\textbf{A}}_i\textit{\textbf{w}})\otimes \textit{\textbf{w}}, \quad \textit{\textbf{w}}\otimes (\textit{\textbf{A}}^2_i\textit{\textbf{w}})+(\textit{\textbf{A}}^2_i\textit{\textbf{w}})\otimes \textit{\textbf{w}} \end{aligned} \end{aligned}$$
(88)

and the objective scalar functions \(H^\alpha (a_1,a_2,\ldots ,a_m, \textit{\textbf{A}}_1, \textit{\textbf{A}}_2,\ldots ,\textit{\textbf{A}}_l,\textit{\textbf{w}})\) depending on the invariants

$$\begin{aligned} \begin{aligned}&a_s, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{A}}_i, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{A}}^2_i, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{A}}^3_i, \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}_i\textit{\textbf{A}}_j), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}^2_i\textit{\textbf{A}}_j), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}^2_i\textit{\textbf{A}}^2_j), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{A}}_i\textit{\textbf{A}}_j\textit{\textbf{A}}_k), \\&\textit{\textbf{w}}\cdot \textit{\textbf{w}}, \quad \textit{\textbf{w}}\cdot (\textit{\textbf{A}}_i\textit{\textbf{w}}), \quad \textit{\textbf{w}}\cdot (\textit{\textbf{A}}^2_i\textit{\textbf{w}}), \quad (\textit{\textbf{A}}_i\textit{\textbf{w}})\cdot (\textit{\textbf{A}}_j\textit{\textbf{w}}), \end{aligned} \end{aligned}$$
(89)

with \(s=1,\ldots ,m\), \(i,j=1,\ldots ,l\) and \(i\ne j\).

In the case of \(\varvec{\mathcal {M}}\) and \(\varvec{\mathcal {R}}^{(i)}\) we have \(m=1\) and \(a_1\equiv T\), \(l=3\) and \(\textit{\textbf{A}}_1\equiv \varvec{\varepsilon }\), \(\textit{\textbf{A}}_2\equiv \textit{\textbf{m}}\), \(\textit{\textbf{A}}_3\equiv \textit{\textbf{r}}\), and \(\textit{\textbf{w}}\equiv \nabla T\). Then, the second-order symmetric tensors \(\varvec{\mathcal {M}}(T, \nabla T, \varvec{\varepsilon }, \textit{\textbf{m}}, \textit{\textbf{r}})\) and \(\varvec{\mathcal {R}}^{(i)}(T, \nabla T, \varvec{\varepsilon }, \textit{\textbf{m}}, \textit{\textbf{r}})\) are built on the following invariants

$$\begin{aligned} \begin{aligned}&\textit{\textbf{U}}, \quad \varvec{\varepsilon }, \quad \textit{\textbf{m}}, \quad \textit{\textbf{r}}, \quad \varvec{\varepsilon }^2, \quad \textit{\textbf{m}}^2, \quad \textit{\textbf{r}}^2, \quad \varvec{\varepsilon }\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }, \quad \varvec{\varepsilon }\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }, \quad \textit{\textbf{m}}\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}, \\&\varvec{\varepsilon }^2\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }^2, \quad \varvec{\varepsilon }^2\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }^2, \quad \textit{\textbf{m}}^2\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}^2, \quad \textit{\textbf{m}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{m}}^2, \quad \textit{\textbf{r}}^2\textit{\textbf{m}}+\textit{\textbf{m}}\textit{\textbf{r}}^2, \\&\textit{\textbf{r}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{r}}^2, \quad \varvec{\varepsilon }^2\textit{\textbf{m}}^2+\textit{\textbf{m}}^2\varvec{\varepsilon }^2, \quad \varvec{\varepsilon }^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\varvec{\varepsilon }^2, \quad \textit{\textbf{m}}^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\textit{\textbf{m}}^2, \\&\nabla T\otimes \nabla T, \quad \nabla T\otimes (\varvec{\varepsilon }\nabla T)+(\varvec{\varepsilon }\nabla T)\otimes \nabla T, \quad \nabla T\otimes (\textit{\textbf{m}}\nabla T)+(\textit{\textbf{m}}\nabla T)\otimes \nabla T,\\&\nabla T\otimes (\textit{\textbf{r}}\nabla T)+(\textit{\textbf{r}}\nabla T)\otimes \nabla T, \quad \nabla T\otimes (\varvec{\varepsilon }^2\nabla T)+(\varvec{\varepsilon }^2\nabla T)\otimes \nabla T, \\&\nabla T\otimes (\textit{\textbf{m}}^2\nabla T)+(\textit{\textbf{m}}^2\nabla T)\otimes \nabla T, \quad \nabla T\otimes (\textit{\textbf{r}}^2\nabla T)+(\textit{\textbf{r}}^2\nabla T)\otimes \nabla T., \end{aligned} \end{aligned}$$
(90)

where, for instance, \(\nabla T\otimes \nabla T\equiv (T_{,i}T_{,j})\), \(\nabla T\otimes (\varvec{\varepsilon }\nabla T)+(\varvec{\varepsilon }\nabla T)\otimes \nabla T\equiv (T_{,i}\varepsilon _{jk}T_{,k}+\varepsilon _{ik}T_{,k}T_{,j})\) and \(\nabla T\otimes (\varvec{\varepsilon }^2\nabla T)+(\varvec{\varepsilon }^2\nabla T)\otimes \nabla T\equiv (T_{,i}\varepsilon _{jl}\varepsilon _{lk}T_{,k}+\varepsilon _{il}\varepsilon _{lk}T_{,k}T_{,j})\).

Thus, we have for \(\varvec{\mathcal {M}}\) and \(\varvec{\mathcal {R}}^{(i)}\), according to (85), the following expressions

$$\begin{aligned} \begin{aligned} \!\!\! \varvec{\mathcal {M}}&=M^1\textit{\textbf{U}}+M^2\varvec{\varepsilon }+M^3\textit{\textbf{m}}+M^4\textit{\textbf{r}}+M^5\varvec{\varepsilon }^2+M^6\textit{\textbf{m}}^2+M^7\textit{\textbf{r}}^2+M^8(\varvec{\varepsilon }\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon })+M^9(\varvec{\varepsilon }\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }) \\&\quad +M^{10}(\textit{\textbf{m}}\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}})+M^{11}(\varvec{\varepsilon }^2\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }^2)++M^{12}(\varvec{\varepsilon }^2\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }^2)+M^{13}(\textit{\textbf{m}}^2\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}^2) \\&\quad +M^{14}(\textit{\textbf{m}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{m}}^2)+M^{15}(\textit{\textbf{r}}^2\textit{\textbf{m}}+\textit{\textbf{m}}\textit{\textbf{r}}^2)+M^{16}(\textit{\textbf{r}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{r}}^2)+M^{17}(\varvec{\varepsilon }^2\textit{\textbf{m}}^2+\textit{\textbf{m}}^2\varvec{\varepsilon }^2) \\&\quad +M^{18}(\varvec{\varepsilon }^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\varvec{\varepsilon }^2)+M^{19}(\textit{\textbf{m}}^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\textit{\textbf{m}}^2)+M^{20}(\nabla T\otimes \nabla T)\\&\quad +M^{21}[\nabla T\otimes (\varvec{\varepsilon }\nabla T)+(\varvec{\varepsilon }\nabla T)\otimes \nabla T]+M^{22}[\nabla T\otimes (\textit{\textbf{m}}\nabla T)+(\textit{\textbf{m}}\nabla T)\otimes \nabla T] \\&\quad +M^{23}[\nabla T\otimes (\textit{\textbf{r}}\nabla T)+(\textit{\textbf{r}}\nabla T)\otimes \nabla T]+M^{24}[\nabla T\otimes (\varvec{\varepsilon }^2\nabla T)+(\varvec{\varepsilon }^2\nabla T)\otimes \nabla T] \\&\quad +M^{25}[\nabla T\otimes (\textit{\textbf{m}}^2\nabla T)+(\textit{\textbf{m}}^2\nabla T)\otimes \nabla T]+M^{26}[\nabla T\otimes (\textit{\textbf{r}}^2\nabla T)+(\textit{\textbf{r}}^2\nabla T)\otimes \nabla T], \end{aligned} \end{aligned}$$
(91)

and

$$\begin{aligned} \begin{aligned} \varvec{\mathcal {R}}^{(i)}&=R^1\textit{\textbf{U}}+R^2\varvec{\varepsilon }+R^3\textit{\textbf{m}}+R^4\textit{\textbf{r}}+R^5\varvec{\varepsilon }^2+R^6\textit{\textbf{m}}^2+R^7\textit{\textbf{r}}^2+R^8(\varvec{\varepsilon }\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon })+R^9(\varvec{\varepsilon }\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }) \\&\quad +R^{10}(\textit{\textbf{m}}\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}})+R^{11}(\varvec{\varepsilon }^2\textit{\textbf{m}}+\textit{\textbf{m}}\varvec{\varepsilon }^2)++R^{12}(\varvec{\varepsilon }^2\textit{\textbf{r}}+\textit{\textbf{r}}\varvec{\varepsilon }^2)+R^{13}(\textit{\textbf{m}}^2\textit{\textbf{r}}+\textit{\textbf{r}}\textit{\textbf{m}}^2) \\&\quad +R^{14}(\textit{\textbf{m}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{m}}^2)+R^{15}(\textit{\textbf{r}}^2\textit{\textbf{m}}+\textit{\textbf{m}}\textit{\textbf{r}}^2)+R^{16}(\textit{\textbf{r}}^2\varvec{\varepsilon }+\varvec{\varepsilon }\textit{\textbf{r}}^2)+R^{17}(\varvec{\varepsilon }^2\textit{\textbf{m}}^2+\textit{\textbf{m}}^2\varvec{\varepsilon }^2) \\&\quad +R^{18}(\varvec{\varepsilon }^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\varvec{\varepsilon }^2)+R^{19}(\textit{\textbf{m}}^2\textit{\textbf{r}}^2+\textit{\textbf{r}}^2\textit{\textbf{m}}^2)+R^{20}(\nabla T\otimes \nabla T)\\&\quad +R^{21}[\nabla T\otimes (\varvec{\varepsilon }\nabla T)+(\varvec{\varepsilon }\nabla T)\otimes \nabla T]+R^{22}[\nabla T\otimes (\textit{\textbf{m}}\nabla T)+(\textit{\textbf{m}}\nabla T)\otimes \nabla T] \\&\quad +R^{23}[\nabla T\otimes (\textit{\textbf{r}}\nabla T)+(\textit{\textbf{r}}\nabla T)\otimes \nabla T]+R^{24}[\nabla T\otimes (\varvec{\varepsilon }^2\nabla T)+(\varvec{\varepsilon }^2\nabla T)\otimes \nabla T] \\&\quad +R^{25}[\nabla T\otimes (\textit{\textbf{m}}^2\nabla T)+(\textit{\textbf{m}}^2\nabla T)\otimes \nabla T]+R^{26}[\nabla T\otimes (\textit{\textbf{r}}^2\nabla T)+(\textit{\textbf{r}}^2\nabla T)\otimes \nabla T], \end{aligned} \end{aligned}$$
(92)

where \(M^\alpha (T, \nabla T, \varvec{\varepsilon }, \textit{\textbf{m}}, \textit{\textbf{r}})\) and \(R^\alpha (T, \nabla T, \varvec{\varepsilon }, \textit{\textbf{m}}, \textit{\textbf{r}})\), \(\alpha =1,\ldots ,26\), are scalar objective functions, that depend on the following invariants

$$\begin{aligned} \begin{aligned}&T, \quad {{\,\mathrm{tr}\,}}\varvec{\varepsilon }, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{m}}, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{r}}, \quad {{\,\mathrm{tr}\,}}\varvec{\varepsilon }^2, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{m}}^2, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{r}}^2, \quad {{\,\mathrm{tr}\,}}\varvec{\varepsilon }^3, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{m}}^3, \quad {{\,\mathrm{tr}\,}}\textit{\textbf{r}}^3, \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{m}}), \\&{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{m}}), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\varvec{\varepsilon }), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\textit{\textbf{r}}), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{r}}^2\varvec{\varepsilon }), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{r}}^2\textit{\textbf{m}}), \\&{{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{m}}^2), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }^2\textit{\textbf{r}}^2), \quad {{\,\mathrm{tr}\,}}(\textit{\textbf{m}}^2\textit{\textbf{r}}^2), \quad {{\,\mathrm{tr}\,}}(\varvec{\varepsilon }\textit{\textbf{m}}\textit{\textbf{r}}), \\&\nabla T\cdot \nabla T, \quad \nabla T\cdot (\varvec{\varepsilon }\nabla T), \quad \nabla T\cdot (\textit{\textbf{m}}\nabla T), \quad \nabla T\cdot (\textit{\textbf{r}}\nabla T), \quad \nabla T\cdot (\varvec{\varepsilon }^2\nabla T), \quad \nabla T\cdot (\textit{\textbf{m}}^2\nabla T), \\&\nabla T\cdot (\textit{\textbf{r}}^2\nabla T), \quad (\varvec{\varepsilon }\nabla T)\cdot (\textit{\textbf{m}}\nabla T), \quad (\varvec{\varepsilon }\nabla T)\cdot (\textit{\textbf{r}}\nabla T), \quad (\textit{\textbf{m}}\nabla T)\cdot (\textit{\textbf{r}}\nabla T). \end{aligned} \end{aligned}$$
(93)

where, for instance, \(\nabla T\cdot (\varvec{\varepsilon }^2\nabla T)\equiv (T_{,i}\varepsilon _{il}\varepsilon _{lk}T_{,k})\). Notice that the invariants of the first three lines of (93) are those of (81). Relations (72) and (73) are a first approximation of (91) and (92), respectively, being \(\textit{\textbf{m}}=\varvec{\dot{\varepsilon }}\).

Appendix C: Objective representation of vector functions

Following [26,27,28] and [29] a vector function \(\textit{\textbf{g}},\) that depends on m scalar function, namely \(a_1\), \(a_2\),...,\(a_m\), (in the case of the heat flux \(\textit{\textbf{q}}\), \(m=1\) and \(a_1\equiv T\)), and l second-order symmetric tensors, namely \(\textit{\textbf{A}}_1\), \(\textit{\textbf{A}}_2\),...,\(\textit{\textbf{A}}_l\) (in our case \(l=3\) and \(\textit{\textbf{A}}_1\equiv \varvec{\varepsilon }\), \(\textit{\textbf{A}}_2\equiv \textit{\textbf{m}}\), \(\textit{\textbf{A}}_3\equiv \textit{\textbf{r}}\)) and on a vector \(\textit{\textbf{w}}\) (in our case \(\textit{\textbf{w}}\equiv \nabla T\)), is expressed as polynomial of the invariants

$$\begin{aligned} \textit{\textbf{w}}, \quad \textit{\textbf{A}}_i\textit{\textbf{w}}, \quad \textit{\textbf{A}}^2_i\textit{\textbf{w}}, \quad \textit{\textbf{A}}_i\textit{\textbf{A}}_j\textit{\textbf{w}}, \quad \textit{\textbf{A}}_j\textit{\textbf{A}}_i\textit{\textbf{w}}, \end{aligned}$$
(94)

with \(i,j=1,\ldots ,l\) and \(i\ne j\), having the form

$$\begin{aligned} \textit{\textbf{g}}=\sum _{\beta =1}^n g^\beta \textit{\textbf{g}}_\beta , \end{aligned}$$
(95)

where \(g^\beta =g^\beta (a_1,a_2,\ldots ,a_m, \textit{\textbf{A}}_1, \textit{\textbf{A}}_2,\ldots ,\textit{\textbf{A}}_l,\textit{\textbf{w}})\), \(\beta =1,\ldots ,n\), are objective scalar functions (and than depending on the invariants (93)) and \(\textit{\textbf{g}}_\beta \) are building on the set of the invariants of the list (94).

Thus, the invariants of the vector-value function \(\textit{\textbf{q}}(T, \nabla T, \varvec{\varepsilon }, \textit{\textbf{m}}, \textit{\textbf{r}})\) are

$$\begin{aligned} \begin{aligned}&\nabla T, \quad \varvec{\varepsilon }\nabla T, \quad \textit{\textbf{m}}\nabla T, \quad \textit{\textbf{r}}\nabla T, \quad \varvec{\varepsilon }^2\nabla T, \quad \textit{\textbf{m}}^2\nabla T, \quad \textit{\textbf{r}}^2\nabla T, \quad \varvec{\varepsilon }\textit{\textbf{m}}\nabla T, \quad \varvec{\varepsilon }\textit{\textbf{r}}\nabla T, \quad \textit{\textbf{m}}\textit{\textbf{r}}\nabla T, \\&\textit{\textbf{m}}\varvec{\varepsilon }\nabla T, \quad \textit{\textbf{r}}\varvec{\varepsilon }\nabla T, \quad \textit{\textbf{r}}\textit{\textbf{m}}\nabla T, \end{aligned} \end{aligned}$$
(96)

and, according to (95) (with \(n=13\)), \(\textit{\textbf{q}}\) has the form

$$\begin{aligned} \begin{aligned} \textit{\textbf{q}}&=q^1\nabla T+q^2\varvec{\varepsilon }\nabla T+q^3\textit{\textbf{m}}\nabla T+q^4\textit{\textbf{r}}\nabla T+q^5\varvec{\varepsilon }^2\nabla T+q^6\textit{\textbf{m}}^2\nabla T+q^7\textit{\textbf{r}}^2\nabla T+q^8\varvec{\varepsilon }\textit{\textbf{m}}\nabla T \\&\quad +q^9\varvec{\varepsilon }\textit{\textbf{r}}\nabla T+q^{10}\textit{\textbf{m}}\textit{\textbf{r}}\nabla T+q^{11}\textit{\textbf{m}}\varvec{\varepsilon }\nabla T+q^{12}\textit{\textbf{r}}\varvec{\varepsilon }\nabla T+q^{13}\textit{\textbf{r}}\textit{\textbf{m}}\nabla T, \end{aligned} \end{aligned}$$
(97)

where \(q^\beta =q^\beta (T, \nabla T, \varvec{\varepsilon }, \textit{\textbf{m}}, \textit{\textbf{r}})\), \(\beta =1,\ldots ,13\), are objective scalar functions, that depend on the invariants (93). Relation (78), \(\textit{\textbf{q}}=q^1\nabla T\), is a first approximated form of (97), with \(\textit{\textbf{m}}=\varvec{\dot{\varepsilon }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Famà, A., Restuccia, L. & Jou, D. A simple model of porous media with elastic deformations and erosion or deposition. Z. Angew. Math. Phys. 71, 124 (2020). https://doi.org/10.1007/s00033-020-01346-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01346-0

Mathematics Subject Classification

Keywords

Navigation