Skip to main content
Log in

Teleportation with superconducting qubits

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper we propose a new protocol for quantum teleportation between two LC resonators in Alice’s and Bob’s lab via superconducting qubits. The coupling of superconducting qubits with each other and with LC resonators are tunable by applying the external magnetic fields. We use this model to generate entanglement between superconducting qubits and teleport the unknown state of LC resonator in Alice’s to Bob’s lab. To implement teleportation, the result of Alice’s Bell state measurement is classically informed to Bob. Finally, the unknown state of LC resonator in Alice’s lab is teleported to the state of LC resonator in Bob’s lab by applying a phase gate and a proper unitary rotating operator on the state of LC resonator in Bob’s lab. It is observed that the target state is teleported to the LC resonator in Bob’s lab with maximum possible fidelity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Northup, R. Blatt, Nat. Photonics 8, 356 (2014)

    Article  ADS  Google Scholar 

  2. M.A. Nielsen, I. Chuang, Am. J. Phys. 70, 558 (2002)

    Article  ADS  Google Scholar 

  3. S.D. Barrett, P. Kok, Phys. Rev. A 71, 060310 (2005)

    Article  ADS  Google Scholar 

  4. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. S.B. Zheng, Phys. Rev. A 69, 64 (2004)

    Google Scholar 

  6. N. Sehati, M.K. Tavassoly, Quantum Inf. Process. 16, 193 (2017)

    Article  ADS  Google Scholar 

  7. R. Pakniat, M.H. Zandi, M.K. Tavassoly, Eur. Phys. J. Plus 132, 3 (2017)

    Article  Google Scholar 

  8. N. Sehati, M.K. Tavassoly, M. Ghasemi, Eur. Phys. J. Plus 134, 552 (2019)

    Article  Google Scholar 

  9. S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  10. M. Riebe, H. Häffner, C. Roos, W. Hänsel, J. Benhelm, G. Lancaster, T. Körber, C. Becher, F. Schmidt-Kaler, D. James, R. Blatt, Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  11. M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  12. Y.H. Kim, S.P. Kulik, Y. Shih, Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  13. S.B. Zheng, G.C. Guo, Phys. Lett. A 236, 180 (1997)

    Article  ADS  Google Scholar 

  14. K.P. Seshadreesan, J.P. Dowling, G.S. Agarwal, Phys. Scr. 90, 074029 (2015)

    Article  ADS  Google Scholar 

  15. S.J. van Enk, O. Hirota, Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  16. N. Takei, T. Aoki, S. Koike, K. Yoshino, K. Wakui, H. Yonezawa, T. Hiraoka, J. Mizuno, M. Takeoka, M. Ban, A. Furusawa, Phys. Rev. A 72, 042304 (2005)

    Article  ADS  Google Scholar 

  17. S.B. Zheng, Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

  18. W. Cardoso, A. Avelar, B. Baseia, Physica A 388, 1331 (2009)

    Article  ADS  Google Scholar 

  19. S. Daniotti, C. Benedetti, M.G. Paris, Eur. Phys. J. D 72, 208 (2018)

    Article  ADS  Google Scholar 

  20. M. Baur, A. Fedorov, L. Steffen, S. Filipp, M.P. Da Silva, A. Wallraff, Phys. Rev. Lett. 108, 040502 (2012)

    Article  ADS  Google Scholar 

  21. J. Joo, E. Ginossar, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  22. G. Wendin, Rep. Prog. Phys. 80, 106001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  24. Z.L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  25. L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, A. Wallraff, Nature 500, 319 (2013)

    Article  ADS  Google Scholar 

  26. Q.K. He, D.L. Zhou, Eur. Phys. J. D 73, 96 (2019)

    Article  ADS  Google Scholar 

  27. Y.Q. Zhang, J.B. Xu, Eur. Phys. J. D 63, 483 (2011)

    Article  ADS  Google Scholar 

  28. J.Q. You, F. Nori, Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  29. D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, J. Schmiedmayer, Phys. Rev. A 79, 040304 (2009)

    Article  ADS  Google Scholar 

  30. D.S. Freitas, A. Vidiella-Barranco, J.A. Roversi, Eur. Phys. J. D 68, 193 (2014)

    Article  ADS  Google Scholar 

  31. F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A.P. Sears, D. Hover, T.J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J.L. Yoder, Nat. Commun. 7, 12964 (2016)

    Article  ADS  Google Scholar 

  32. M.D. Hutchings, J.B. Hertzberg, Y. Liu, N.T. Bronn, G.A. Keefe, M. Brink, J.M. Chow, B.L.T. Plourde, Phys. Rev. Appl. 8, 044003 (2017)

    Article  ADS  Google Scholar 

  33. J.K. Xie, S.L. Ma, Z.P. Yang, Z. Li, F.L. Li, Phys. Lett. A 382, 2626 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Porras, J.J. Garca-Ripoll, Phys. Rev. Lett. 108, 043602 (2012)

    Article  ADS  Google Scholar 

  35. X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y.P. Song, Z.Y. Xue, Z.Q. Yin, L. Sun, Phys. Rev. Appl. 10, 054009 (2018)

    Article  ADS  Google Scholar 

  36. D.L. Colton, R. Kress, R. Kress, in Inverse Acoustic and Electromagnetic Scattering Theory (Springer, Berlin, 1998), p. 32.

  37. P.B. Li, S.Y. Gao, F.L. Li, Phys. Rev. A 86, 012318 (2012)

    Article  ADS  Google Scholar 

  38. T. Li, Z.Q. Yin, Sci. Bull. 61, 163 (2016)

    Article  Google Scholar 

  39. M.F. Santos, Phys. Rev. Lett. 95, 010504 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Tavassoly.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimian, S., Tavassoly, M.K. & Sehati, N. Teleportation with superconducting qubits. Eur. Phys. J. D 74, 148 (2020). https://doi.org/10.1140/epjd/e2020-10049-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10049-0

Keywords

Navigation