Skip to main content

Advertisement

Log in

Direct Comparison of Fecal and Gut Microbiota in the Blue Mussel (Mytilus edulis) Discourages Fecal Sampling as a Proxy for Resident Gut Community

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bivalves have ecological and economic importance but information regarding their associated microbiomes is lacking. As suspension feeders, bivalves capture and ingest a myriad of particles, and their digestive organs have a high throughput of particle-associated microbiota. To better understand the complement of transient and resident microbial communities, standard methods need to be developed. For example, fecal sampling could represent a convenient proxy for the gut microbiome and is simple, nondestructive, and allows for sampling of individuals through time. The goal of this study was to evaluate fecal sampling as a reliable proxy for gut microbiome assessment in the blue mussel (Mytilus edulis). Mussels were collected from the natural environment and placed into individual sterilized microcosms for 6 h to allow for fecal egestion. Feces and gut homogenates from the same individuals were sampled and subjected to 16S rRNA gene amplicon sequencing. Fecal communities of different mussels resembled each other but did not resemble gut communities. Fecal communities were significantly more diverse, in terms of amplicon sequence variant (ASV) richness and evenness, than gut communities. Results suggested a mostly transient nature for fecal microbiota. Nonetheless, mussels retained a distinct resident microbial community in their gut after fecal egestion that was dominated by ASVs belonging to Mycoplasma. The use of fecal sampling as a nondestructive substitute for direct sampling of the gut is strongly discouraged. Experiments that aim to study solely resident bivalve gut microbiota should employ an egestion period prior to gut sampling to allow time for voidance of transient microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The data from this work are available upon email request from Tyler W. Griffin. Sequence data were uploaded to the NCBI Short Read Archive (SRA) under submission ID SUB7223904 (BioProject ID: PRJNA622268).

References

  1. Dame R (1993) Bivalve filter feeders and estuarine and coastal ecosystem processes: conclusions. Bivalve Filter Feeders. Springer, pp 565–569

  2. Prins TC, Smaal AC, Dame RF (1998) A review of the feedbacks between bivalve grazing and ecosystem processes. Aquat Ecol 31:349–359. https://doi.org/10.1023/A:1009924624259

    Article  Google Scholar 

  3. Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  4. Cranford PJ, Ward JE, Shumway SE (2011) Bivalve filter feeding: variability and limits of the aquaculture biofilter. In: Shumway SE (ed) Shellfish aquaculture and the environment 1st edn. Wiley, pp 81–124

  5. Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiol Lett 366:366. https://doi.org/10.1093/femsle/fnz117

    Article  CAS  Google Scholar 

  6. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, Patel S, Cutting M, Madden T, Hamilton H, Harris E, Gevers D, Simone G, McInnes P, Versalovic J (2013) The human microbiome project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J 27:1012–1022. https://doi.org/10.1096/fj.12-220806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smits LP, Bouter KEC, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145:946–953. https://doi.org/10.1053/j.gastro.2013.08.058

    Article  PubMed  Google Scholar 

  9. Durbán A, Abellán JJ, Jiménez-Hernández N, Ponce M, Ponce J, Sala T, D’Auria G, Latorre A, Moya A (2011) Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol 61:123–133. https://doi.org/10.1007/s00248-010-9738-y

    Article  PubMed  Google Scholar 

  10. Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL (2018) Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, Evolution. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00803

  11. Zhou J, Nelson TM, Rodriguez Lopez C, Sarma RR, Zhou SJ, Rollins LA (2020) A comparison of non-lethal sampling methods for amphibian gut microbiome analyses. Mol Ecol Resour n/a. https://doi.org/10.1111/1755-0998.13139

  12. Owen G (1966) Digestion. In: Wilbur KM, Yonge CM (eds) Physiology of mollusca. Academic Press, New York, pp 53–88

    Chapter  Google Scholar 

  13. Simons AL, Churches N, Nuzhdin S (2018) High turnover of faecal microbiome from algal feedstock experimental manipulations in the Pacific oyster (Crassostrea gigas). Microb Biotechnol 11:848–858. https://doi.org/10.1111/1751-7915.13277

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubiolo JA, Lozano-Leon A, Rodriguez-Souto R, Fol Rodriguez N, Vieytes MR, Botana LM (2018) The impact of depuration on mussel hepatopancreas bacteriome composition and predicted metagenome. Antonie Van Leeuwenhoek 111:1117–1129. https://doi.org/10.1007/s10482-018-1015-y

    Article  CAS  PubMed  Google Scholar 

  15. Li Y-F, Yang N, Liang X, Yoshida A, Osatomi K, Power D, Batista FM, Yang J-L (2018) Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front Physiol 9:839. https://doi.org/10.3389/fphys.2018.00839

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vezzulli L, Stagnaro L, Grande C, Tassistro G, Canesi L, Pruzzo C (2018) Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microb Ecol 75:495–504. https://doi.org/10.1007/s00248-017-1051-6

    Article  CAS  PubMed  Google Scholar 

  17. Pierce ML, Ward JE (2019) Gut microbiomes of the eastern oyster (Crassostrea virginica) and the blue mussel (Mytilus edulis): temporal variation and the influence of marine aggregate-associated microbial communities. mSphere 4:e00730–e00719. https://doi.org/10.1128/mSphere.00730-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Greenberg AE, Hunt DA (1985) Laboratory procedures for the examination of seawater and shellfish. American Public Health Association, Washington DC

    Google Scholar 

  19. Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137

    Article  Google Scholar 

  20. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869https://www.nature.com/articles/nmeth.3869#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Callahan B (2018) Silva taxonomic training data formatted for DADA2 (Silva version 132). https://doi.org/10.5281/zenodo.1172783

  23. Schliep KP (2010) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wright ES (2015) DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics 16:322. https://doi.org/10.1186/s12859-015-0749-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  28. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  30. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15. https://doi.org/10.1186/s13059-014-0550-8

  31. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  33. Anderson MJ (2014) Permutational multivariate analysis of variance (PERMANOVA)Wiley StatsRef: statistics reference online. Wiley

  34. Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574. https://doi.org/10.1890/12-2010.1

    Article  Google Scholar 

  35. Dyksma S, Pjevac P, Ovanesov K, Mussmann M (2018) Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol 20:450–461. https://doi.org/10.1111/1462-2920.13880

    Article  CAS  PubMed  Google Scholar 

  36. Weel PBV (1961) The comparative physiology of digestion in Molluscs. Am Zool 1:245–252

    Article  Google Scholar 

  37. Menzel RW (1955) Some phases of the biology of Ostrea equestris (Say) and comparison with Crassostrea virginica (Gmelin). Inst Mar Sci 4:69–153

    Google Scholar 

  38. Owen G (1974) Feeding and digestion in the Bivalvia. In: Lowenstein O (ed) Advances in Comparative Physiology and Biochemistry. Elsevier, pp 1–35

  39. Foster-Smith RL (1975) The effect of concentration of suspension and inert material on the assimilation of algae by three bivalves. J Mar Biol Assoc U K 55:411–418. https://doi.org/10.1017/S0025315400016027

    Article  Google Scholar 

  40. Gagnon C, Fisher NS (1997) The bioavailability of sediment-bound Cd, Co, and Ag to the mussel Mytilus edulis. Can J Fish Aquat Sci 54:147–156. https://doi.org/10.1139/f96-256

    Article  CAS  Google Scholar 

  41. Oliver JD, Pruzzo C, Vezzulli L, Kaper JB (2013) Vibrio species. In: Doyle M, Buchanan R (eds) Food microbiology. ASM Press, Washington, DC, pp 401–439

    Google Scholar 

  42. Park S, Yoshizawa S, Inomata K, Kogure K, Yokota A (2012) Halioglobus japonicus gen. Nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 62:1784–1789. https://doi.org/10.1099/ijs.0.031443-0

    Article  CAS  PubMed  Google Scholar 

  43. Li S-H, Song J, Lim Y, Joung Y, Kang I, Cho J-C (2020) Halioglobus maricola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.003985

  44. Kawasaki K, Nogi Y, Hishinuma M, Nodasaka Y, Matsuyama H, Yumoto I (2002) Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 52:1455–1459. https://doi.org/10.1099/00207713-52-5-1455

    Article  PubMed  Google Scholar 

  45. Hosoya S, Jang J-H, Yasumoto-Hirose M, Matsuda S, Kasai H (2009) Psychromonas agarivorans sp. nov., a novel agarolytic bacterium. Int J Syst Evol Microbiol 59:1262–1266. https://doi.org/10.1099/ijs.0.003244-0

    Article  CAS  PubMed  Google Scholar 

  46. Yoon J, Matsuo Y, Katsuta A, Jang J-H, Matsuda S, Adachi K, Kasai H, Yokota A (2008) Haloferula rosea gen. nov., sp. nov., Haloferula harenae sp. nov., Haloferula phyci sp. nov., Haloferula helveola sp. nov. and Haloferula sargassicola sp. nov., five marine representatives of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’. Int J Syst Evol Microbiol 58:2491–2500. https://doi.org/10.1099/ijs.0.2008/000711-0

    Article  CAS  PubMed  Google Scholar 

  47. Nedashkovskaya OI, Kim SB, Han SK, Rhee M-S, Lysenko AM, Rohde M, Zhukova NV, Frolova GM, Mikhailov VV, Bae KS (2004) Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 54:1257–1261. https://doi.org/10.1099/ijs.0.02949-0

    Article  CAS  PubMed  Google Scholar 

  48. Duggins DO, Eckman JE (1997) Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar Biol 128:489–495. https://doi.org/10.1007/s002270050115

    Article  Google Scholar 

  49. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829. https://doi.org/10.1099/ijs.0.65081-0

    Article  CAS  PubMed  Google Scholar 

  50. McFall-Ngai M (2014) Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol 12:e1001783. https://doi.org/10.1371/journal.pbio.1001783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM, Falsen E, Frolova GM, Mikhailov VV, Bae KS (2004) Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 54:119–123. https://doi.org/10.1099/ijs.0.02757-0

    Article  CAS  PubMed  Google Scholar 

  52. Imhoff JF (2014) The family Chromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Gammaproteobacteria. Springer, Berlin Heidelberg, pp 151–178

    Google Scholar 

  53. Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231

    Article  CAS  PubMed  Google Scholar 

  54. Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N (2017) Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci 114:9641–9646. https://doi.org/10.1073/pnas.1707186114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. King GM, Judd C, Kuske CR, Smith C (2012) Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One 7:e51475. https://doi.org/10.1371/journal.pone.0051475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Milan M, Carraro L, Fariselli P, Martino ME, Cavalieri D, Vitali F, Boffo L, Patarnello T, Bargelloni L, Cardazzo B (2018) Microbiota and environmental stress: how pollution affects microbial communities in Manila clams. Aquat Toxicol 194:195–207. https://doi.org/10.1016/j.aquatox.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  57. King WL, Siboni N, Williams NLR, Kahlke T, Nguyen KV, Jenkins C, Dove M, O’Connor W, Seymour JR, Labbate M (2019) Variability in the composition of Pacific oyster microbiomes across oyster families exhibiting different levels of susceptibility to OsHV-1 μvar disease. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00473

  58. Pierce ML, Ward JE (2018) Microbial ecology of the Bivalvia, with an emphasis on the family Ostreidae. J Shellfish Res 37:1–14. https://doi.org/10.2983/035.037.0300

    Article  Google Scholar 

  59. Murphy AE, Kolkmeyer R, Song B, Anderson IC, Bowen J (2019) Bioreactivity and microbiome of biodeposits from filter-feeding bivalves. Microb Ecol 77:343–357. https://doi.org/10.1007/s00248-018-01312-4

    Article  CAS  PubMed  Google Scholar 

  60. Kautsky N, Evans S (1987) Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Mar Ecol Prog Ser 38:201–212

    Article  Google Scholar 

Download references

Funding

This research was funded by a National Science Foundation (NSF) Research Experience for Undergraduate (REU) site grant to Mystic Aquarium and UConn; Award # 1559180.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Julia Baer and Tyler W. Griffin. The first draft of the manuscript was written by Tyler W. Griffin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tyler W. Griffin.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval

NA

Consent to Participate

NA

Consent for Publication

NA

Electronic Supplementary Material

ESM 1

(PNG 346 kb)

ESM 2

(XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, T.W., Baer, J.G. & Ward, J.E. Direct Comparison of Fecal and Gut Microbiota in the Blue Mussel (Mytilus edulis) Discourages Fecal Sampling as a Proxy for Resident Gut Community. Microb Ecol 81, 180–192 (2021). https://doi.org/10.1007/s00248-020-01553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01553-2

Keywords

Navigation