Skip to main content
Log in

Partial Roasting of High-Arsenic Copper Concentrates

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The partial roasting of high-arsenic copper concentrates at 973 K/998 K (700 °C/725 °C) under controlled atmosphere can remove > 95 pct of the arsenic contained in the concentrates, leaving a calcine with 52 to 68 wt pct bornite, 10 to 13 wt pct chalcopyrite and 2 to 5 wt pct magnetite, with 8 to 24 wt pct remnant chalcocite. The mineralogic composition of the calcine obtained is consistent with the calculated mineralogic composition based on the chemical analysis of the calcine and the gaseous phase in equilibrium with the calcine. The formation of the new solid phases present in the calcine (bornite and chalcopyrite) should take place in the emulsion phase of the fluidized bed, while the oxidation of part of the gaseous sulfur generated by thermal decomposition of the sulfides present in the concentrate could occur in the evolving cloud and wake surrounding the air bubbles in the emulsion phase of the fluidized bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

D :

Diffusion coefficient of oxygen at 973 K, ~ 0.15 cm2/s

\( \bar{d}_{\text{p}} \) :

Average particle diameter = 5 × 10−3 cm

\( \bar{d}_{\text{b}} \) :

Average gas bubble diameter = 6 cm

g :

Acceleration of gravity, 980.6 cm/s

Kbe, Kbc, Kcc :

Mass exchange coefficients of gas between bubble and emulsion, bubble and cloud + wake and cloud + wake and emulsion, (1/s)

T :

Temperature (°C)

\( \bar{t} \) :

Average reaction time of solids in the bed, (h)

u br :

Velocity of gas bubbles, 54 cm/s

u mf :

Minimum fluidizing velocity, 5.5 cm/s

\( \varepsilon_{\text{mf}} \) :

Bed porosity at minimum fluidizing velocity, 0.25 (-)

\( \bar{\rho }_{\text{s}} \) :

Average density of solids = 4.5 g/cm3 = 3.58 × 10−2 mole/cm3

References

  1. N. Chakraborti and D.C. Lynch: Met. Trans. B, 1983, vol. 14B, pp. 239-251.

    Article  CAS  Google Scholar 

  2. D.C. Lynch: in Arsenic Metallurgy: Fundamentals and Applications, R.G. Reddy et al. eds., The Metal Society, Warrendale, 1998, pp. 3-34.

  3. S. Nakasawa, A. Yazawa and F.R.A. Jorgensen: Met. Trans. B., 1999, Vol. 30B, pp. 393-401.

    Article  Google Scholar 

  4. I. Imris and A. Klenovcanova: Copper ’03 Conference, Books 2, Pyrometallurgy of Copper, vol. IV, 2003, pp. 125–39.

  5. G. Lindkvist and A. Hölmstrom: in Advances in Sulfide Smelting, H.Y. Sohn and D.B. George eds., AIME Meeting, San Francisco, vol. 2, 1983, pp. 452–72.

  6. J. Tapia and I. Wilkomirsky: J. Miner. Metall. Process., 2001, vol. 18, pp. 154–61.

    CAS  Google Scholar 

  7. A. Hölmstrom: in Extraction Metallurgy ’85, The Institute of Mining and Metallurgy, London, 1985, pp. 935–66.

  8. V.A. Luganov, E.N. Sajin, and G.A. Plaskin: Copper’95 Conference, Pyrometallurgy of Copper, vol. IV, 1995, pp. 409–19.

  9. S. Mäkipirtii: US Patent 4,242,124 (Dec. 30, 1980).

  10. A. Björnberg, A. Hölmstrom, and G. Lidkvist: US patent 4.626.279 (Dec. 2, 1986).

  11. E. Seguel: Met. Engr. thesis, Department of Metallurgical Engineering, University of Concepción, Chile, 2018.

  12. G. Kullerud: Phase Diagram for Ceramists, The American Ceramic Society, Columbus, vol. 2, 1969, p. 519.

    Google Scholar 

  13. P.N. Rowe, B.A. Partridge, and E. Lyall: Chem. Eng. Sci., 1964, vol. 19, pp. 973-75.

    Article  Google Scholar 

  14. D. Geldart: Powder Technol., 1978, vol. 19, p. 133

    Article  CAS  Google Scholar 

  15. D. Kunii and O. Levenspiel: Fluidization Engineering, 2nd edn., Butterworth-Heinemann, Oxford, 1991, pp. 251-252.

    Google Scholar 

  16. D. Kunii and O. Levenspiel: Fluidization Engineering, 2nd edn., Butterworth-Heinemann, Oxford, 1991, p. 149.

    Google Scholar 

  17. Y. Fan: M.Sc. thesis, Department of Metallurgical Engineering, University of Concepción, Chile, 1997.

  18. I. Wilkomirsky, R. Parra, F. Parada, E. Balladares, E. Seguel, J. Etcheverry, and R. Díaz: Metall. Mat. Trans. B, 2020. https://doi.org/10.1007/s11663-020-01870-4.

  19. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin. J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.

Download references

Acknowledgements

The authors thank the DMH Division of CODELCO for permission to publish the experimental data and also Conicyt/PIA for additional support through the CCTE AFB170007 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Wilkomirsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkomirsky, I., Parra, R., Parada, F. et al. Partial Roasting of High-Arsenic Copper Concentrates. Metall Mater Trans B 51, 2030–2038 (2020). https://doi.org/10.1007/s11663-020-01893-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01893-x

Navigation