Skip to main content
Log in

Novel B-C binary fullerenes following the isolated B4C3 hexagonal pyramid rule

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

B-C binary monolayers and fullerenes (borafullerenes) have received considerable attention in recent years. Inspired by the newly reported B4C3 semiconducting boron carbide monolayer isovalent to graphene (Tian et al., Nanoscale, 2019, 11, 11099), we predict herein at density functional theory level a new class of borafullerenes (18) following the isolated B4C3 hexagonal pyramid rule. The spherically aromatic borafullerenes C5h B20C35 (1), C5 B20C45 (2), C5h B20C55 (3), and C5 B20C65 (4) isovalent to C50, C60, C70, and C80, respectively, possess five isolated B4C3 hexagonal pyramids evenly distributed on the waist around the C5 molecular axis, while S10 B40C50 (5), C5 B40C60 (6), S10 B40C70 (7), and C5 B40C80 (8) encompass ten isolated B4C3 pyramids symmetrically distributed on the cage surface. Detailed orbital and bonding analyses indicate that these borafullerenes follow similar σ and π-bonding patterns with their fullerene analogues, with three delocalized 7c-2e π bonds forming a local π-aromatic system over each isolated B4C3 hexagonal pyramid. The calculated formation energies of the (B4C3)nC60-6n (n = 1–5) series isovalent to C60 appear to increase almost linearly with the number of isolated B4C3 pyramids in the system. The IR, Raman, and UV-vis spectra of the prototypical B20C45 (2) are theoretically simulated to facilitate its future spectral characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature (London, United Kingdom) 329:529–531. https://doi.org/10.1038/329529a0

    Article  CAS  Google Scholar 

  2. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) Elemental carbon cages. J. Am. Chem. Soc. 110:1113–1127. https://doi.org/10.1021/ja00212a020

    Article  CAS  Google Scholar 

  3. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  4. Lamparth I, Nuber B, Schick G, Skiebe A, Grӧsser T, Hirsch A (1995) C59N+ and C69N+: isoelectronic heteroanalogues of C60 and C70. Angew. Chem. 107: 2473-2476. https://doi.org/10.1002/ange.19951072035; Angew. Chem. Int. Ed. Engl. 34: 2257–2259. https://doi.org/10.1002/anie.199522571

  5. Nuber B, Hirsch A (1996) A new route to nitrogen heterofullerenes and the first synthesis of (C69N)2. Chem. Commun. 12:1421–1422. https://doi.org/10.1039/cc9960001421

    Article  Google Scholar 

  6. Guo T, Jin CM, Smalley RE (1991) Doping bucky: formation and properties of boron-doped buckminsterfullerene. J. Phys. Chem. 95:4948–4950. https://doi.org/10.1021/j100166a010

    Article  CAS  Google Scholar 

  7. Kimura T, Sugai T, Shinohara H (1996) Production and characterization of boron- and silicon-doped carbon clusters. Chem. Phys. Lett. 256:269–273. https://doi.org/10.1016/0009-2614(96)00436-8

    Article  CAS  Google Scholar 

  8. Muhr HJ, Nesper R, Schnyder B, Kötz R (1996) The boron heterofullerenes C59B and C69B: generation, extraction, mass spectrometric and XPS characterization. Chem. Phys. Lett. 249:399–405. https://doi.org/10.1016/0009-2614(95)01451-9

    Article  CAS  Google Scholar 

  9. Dunk PW, Rodrίguez-Fortea A, Kaiser NK, Shinohara H, Poblet JM, Kroto HW (2013) Formation of heterofullerenes by direct exposure of C60 to boron vapor. Angew. Chem. Int. Ed. 52:315–319. https://doi.org/10.1002/anie.201208244

    Article  CAS  Google Scholar 

  10. Kurita N, Kobayashi K, Kumahora H, Tago K, Ozawa K (1992) Molecular structures, binding energies and electronic properties of dopyballs C59X (X= B, N and S). Chem. Phys. Lett. 198:95–99. https://doi.org/10.1016/0009-2614(92)90054-Q

    Article  CAS  Google Scholar 

  11. Kurita N, Kobayashi K, Kumahora H, Tago K (1993) Bonding and electronic properties of substituted fullerenes C58B2 and C58N2. Phys. Rev. B 48:4850–4854. https://doi.org/10.1080/15363839308011901

    Article  CAS  Google Scholar 

  12. Miyamoto Y, Hamada N, Oshiyama A, Saito S (1992) Electronic structures of solid BC59. Phys. Rev. B 46:1749–1753. https://doi.org/10.1103/PhysRevB.46.1749

    Article  CAS  Google Scholar 

  13. Zou Y, Luo MX, Wang ZJ, Li WZ (1998) Properties of boron-substituted heterofullerenes. Chin. Phys. Lett. 15:106–108. https://doi.org/10.1088/0256-307X/15/2/011

    Article  CAS  Google Scholar 

  14. Chen ZF, Zhao XZ, Tang A (1999) Theoretical studies of the substitution patterns in heterofullerenes C60-xNx and C60-xBx (x=2-8). J. Phys. Chem. A 103:10961–10968. https://doi.org/10.1021/jp9908707

    Article  CAS  Google Scholar 

  15. Xie RH, Jensen L, Bryant GW, Zhao JJ, Smith Jr VH (2003) Structural, electronic, and magnetic properties of heterofullerene C48B12. Chem. Phys. Lett. 375:445–451. https://doi.org/10.1016/S0009-2614(03)00879-0

    Article  CAS  Google Scholar 

  16. Garg I, Sharma H, Dharamvir K, Jindal VK (2011) Substitutional patterns in boron doped heterofullerenes C60−nBn (n = 1–12). J. Comput. Theor. Nanosci. 8:642–655. https://doi.org/10.1166/jctn.2011.1734

    Article  CAS  Google Scholar 

  17. Mohr S, Pochet P, Amsler M, Schaefer B, Sadeghi A, Genovese L, Goedecker S (2014) Boron aggregation in the ground states of boron-carbon fullerenes. Phys. Rev. B 89:041404(R). https://doi.org/10.1103/PhysRevB.89.041404

  18. Yan M, Tian XX, Pei L, Li SD (2018) Cage-like B40C30, B40C40, and B40C50: high-symmetry heterofullerenes isovalent with C60, C70, and C80. J. Mol. Model. 24:296. https://doi.org/10.1007/s00894-018-3828-z

    Article  CAS  PubMed  Google Scholar 

  19. Tian XX, Xuan XY, Yu M, Mu YW, Lu HG, Zhang ZH, Li SD (2019) Predicting two-dimensional semiconducting boron carbides. Nanoscale 11:11099–11106. https://doi.org/10.1039/c9nr02681a

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Zhao YF, Wang LS, Li J (2017) Recent progresses of global minimum searches of nanoclusters with a constrained basin-hopping algorithm in the TGMin program. Comput. Theor. Chem. 1107:57–65. https://doi.org/10.1016/j.comptc.2016.12.028

  21. Zhao YF, Chen X, Li J (2017) TGMin: a global-minimum structure search program based on a constrained basin-hopping algorithm. Nano. Res. 10:3407–3420. https://doi.org/10.1007/s12274-017-1553-z

  22. Chen X, Zhao YF, Zhang YY, Li J (2019) TGMin: an efficient global minimum searching program for free and surface-supported clusters. J. Comput. Chem. 40:1105–1112. https://doi.org/10.1002/jcc.25649

    Article  CAS  PubMed  Google Scholar 

  23. Goedecker S, Hellmann W, Lenosky T (2005) Global minimum determination of the Born-Oppenheimer surface within density functional theory. Phys. Rev. Lett. 95:055501. https://doi.org/10.1103/PhysRevLett.95.055501

    Article  CAS  PubMed  Google Scholar 

  24. Goedecker S (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120:9911–9917. https://doi.org/10.1063/1.1724816

    Article  CAS  PubMed  Google Scholar 

  25. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  26. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72:650–654. https://doi.org/10.1063/1.438955

  27. Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat. Chem. 6:727–731. https://doi.org/10.1038/nchem.1999

    Article  CAS  PubMed  Google Scholar 

  28. Chen Q, Li WL, Zhao YF, Zhang SY, Hu HS, Bai H, Li HR, Tian WJ, Lu HG, Zhai HJ, Li SD, Li J, Wang LS (2015) Experimental and theoretical evidence of an axially chiral borospherene. ACS. Nano. 9:754–760. https://doi.org/10.1021/nn506262c

  29. Chen Q, Zhang SY, Bai H, Tian WJ, Gao T, Li HR, Miao CQ, Mu YW, Lu HG, Zhai HJ, Li SD (2015) Cage-like B41+ and B422+: new chiral members of the borospherene family. Angew. Chem. Int. Ed. 54:8160–8164. https://doi.org/10.1002/anie.201501588

    Article  CAS  Google Scholar 

  30. Wang LS (2016) Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35:69–142. https://doi.org/10.1080/0144235X.2016.1147816

    Article  CAS  Google Scholar 

  31. Jian T, Chen XN, Li SD, Boldyrev AI, Li J, Wang LS (2019) Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 48:3550–3591. https://doi.org/10.1039/c9cs00233b

    Article  CAS  PubMed  Google Scholar 

  32. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10:5207–5217. https://doi.org/10.1039/b804083d

    Article  CAS  PubMed  Google Scholar 

  33. Zubarev DY, Boldyrev AI (2008) Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J. Org. Chem. 73:9251–9258. https://doi.org/10.1021/jo801407e

  34. Tkachenko NV, Boldyrev AI (2019) Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys. Chem. Chem. Phys. 21:9590–9596. https://doi.org/10.1039/c9cp00379g

    Article  CAS  PubMed  Google Scholar 

  35. Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118:6317–6318. https://doi.org/10.1021/JA960582D

  36. Chen ZF, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105:3842–3888. https://doi.org/10.1021/cr030088+

  37. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256:454–464. https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  38. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108:4439–4449. https://doi.org/10.1063/1.475855

    Article  CAS  Google Scholar 

  39. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167:103–128. https://doi.org/10.1016/j.cpc.2004.12.014

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  41. Wang GJ, Zhou MF, Goettel JT, Schrobilgen GJ, Su J, Li J, Schlöder T, Riedel S (2014) Identification of an iridium-containing compound with a formal oxidation state of IX. Nature 514:475–477. https://doi.org/10.1038/nature13795

    Article  CAS  PubMed  Google Scholar 

  42. Fagiani MR, Song XW, Petkov P, Debnath S, Gewinner S, Schöllkopf W, Heine T (2017) Untersuchung der struktur und dynamik des B13+ mithilfe der Infrarot-p hotodissoziationsspektroskopie. Angew. Chem. 129:515–519. https://doi.org/10.1002/ange.201609766

    Article  Google Scholar 

  43. Ciuparu D, Klie RF, Zhu YM, Pfefferle L (2004) Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108:3967–3969. https://doi.org/10.1021/jp049301b

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21720102006 and 21973057 to S.-D. Li, 21903049 to X.-X. Tian, 21803037 to W.-Y. Zan and 11504213 to Y.-W. Mu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Xin Tian, Yue-Wen Mu or Si-Dian Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4.82;mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Tian, XX., Pei, L. et al. Novel B-C binary fullerenes following the isolated B4C3 hexagonal pyramid rule. J Mol Model 26, 199 (2020). https://doi.org/10.1007/s00894-020-04425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04425-1

Keywords

Navigation