Skip to main content
Log in

Investigation of the Frequency Double-Multiplication Effect in a Sub-THz Gyrotron

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The effect of frequency multiplication was investigated for a fundamental-harmonic 0.263-THz kW-level gyrotron, in which a certain fraction of its radiation was observed experimentally at the doubled operating frequency. Accurate measurements of the power of such high-frequency generation were carried out based on cyclotron absorption of radiation in a HgTe/CdHgTe quantum-well heterostructure. The maximum power ratio of the second harmonic to the fundamental one is about 10−4 (an absolute power of 10–15 mW at a frequency of 0.526 THz), which agrees well with the results of simulations within the framework of the self-consistent averaged approach performed to describe the multimode generation in gyrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available in the article, and more data are available on request from the authors.

References

  1. B.G.Danly, W.J.Mulligan, R.J.Temkin, and T.C.L.G.Sollner, Appl. Phys. Lett. 46, 728 (1985)

  2. T.Idehara, Y.Yamagishi and T.Tatsukawa, Int. Journal of Infrared and Millimeter Waves, 18 (1), 259 (1997)

  3. G.S.Nusinovich, and A.B.Pavel’ev, Radiotekhnika i Elektronika, 32, 1274 (1987), in Russian.

  4. N.A.Zavol’skii, G.S.Nusinovich, and A.B.Pavel’ev, Radiophys. & Quant. Electr. 31(3), 269 (1988)

  5. P Woskov, Notch Filter Options for ITER Stray Gyrotron Radiation, Proceedings 49th Annual Meeting of the Division of Plasma Physics, Orlando, Florida, 52(11), NP8.00111 (2007)

  6. Y.Yamaguchi, J.Kasa, T.Saito, Y.Tatematsu, M.Kotera, S.Kubo, T.Shimozuma, K.Tanaka and M. Nishiura. Journal of Instrumentation, 10, C10002 (2005)

  7. A.Pachtman, S.M. Wolfe, I.H. Hutchinson. Nucl. Fusion 27(8), 1283 (1987)

  8. V.I.Belousov, V.S.Ergakov, and M.A.Moiseev, Electronic Technique. Series I. Microwave electronics, 9, 41 (1978)

    Google Scholar 

  9. D.B.McDermott, N.C.Luhmann, Jr., A.Kupiszewski, and H.R.Jory, Phys. Fluids 26, 1936 (1983)

  10. H.Guo, S.H.Chen, V.L.Granatstein, J.Rodgers, G.Nusinovich, M.Walter, B.Levush, and W.J.Chen, Phys. Rev. Lett. 79, 515 (1997)

  11. J.L.Hirshfield, Phys. Rev. A 44, 6845 (1991)

  12. I.V.Bandurkin, V.L.Bratman, G.G.Denisov, Y.K.Kalynov, A.V.Savilov, A.W.Cross, W.He, K.Ronald, and A.D.R.Phelps, Terahertz Sci. Tech. 1, 169 (2008)

  13. I.V.Bandurkin, V.L.Bratman, A.V.Savilov, Phys. Plasmas 16, 070701 (2009)

  14. G.G.Denisov, I.I.Antakov, I.G.Gachev, V.K.Lygin, E.V.Sokolov, E.V.Zasypkin. Studying of the 95/285 GHz gyrotron with frequency multiplication. Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics 2005

  15. M.Yu.Glyavin, A.V.Chirkov, G.G.Denisov, A.P.Fokin, V.V.Kholoptsev, A.N.Kuftin, A.G.Luchinin, G.Yu.Golubyatnikov, V.I.Malygin, M.V.Morozkin, V.N.Manuilov, M.D.Proyavin, A.S.Sedov, E.V.Sokolov, E.M.Tai, A.I.Tsvetkov and V.E.Zapevalov, Rev.Sci. Instrum. 86, 54705 (2015)

  16. V.V.Rumyantsev, K.V.Maremyanin, A.P.Fokin, A.A.Dubinov, V.V.Utochkin, M.Yu.Glyavin, N.N.Mikhailov, S.A.Dvoretskii, S.V.Morozov, V.I.Gavrilenko. Semiconductors 53 (9), 1217 (2019)

  17. A.V.Ikonnikov, A.A.Lastovkin, K.E.Spirin, M.S.Zholudev, V.V.Rumyantsev, K.V.Maremyanin, A.V.Antonov, V.Ya.Aleshkin, V.I.Gavrilenko, S.A.Dvoretskii, N.N.Mikhailov, Yu.G.Sadofyev, N. Samal. JETP Letters, 92(11), 756 (2010)

  18. L.S.Bovkun, S.S.Krishtopenko, M.S.Zholudev, A.V.Ikonnikov, K.E.Spirin, S.A.Dvoretsky, N.N.Mikhailov, F.Teppe, W.Knap, and V.I.Gavrilenko, Semiconductors, 49, 1627 (2015)

    Article  Google Scholar 

  19. M.Yu.Glyavin, A.G.Luchinin, V.N.Manuilov and G.S.Nusinovich. IEEE Transactions on Plasma Science, 36 (3), 591 (2008)

Download references

Acknowledgments

The theoretical investigation of gyrotron operation regimes with nonlinear frequency multiplication presented above was supported by Russian Science Foundation Project No. 19-12-00141, and experimental measurement of microwave power and frequency on high harmonics was supported by Russian Science Foundation Project No. 18-79-10112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rumyantsev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyavin, M., Zotova, I., Rozental, R. et al. Investigation of the Frequency Double-Multiplication Effect in a Sub-THz Gyrotron. J Infrared Milli Terahz Waves 41, 1245–1251 (2020). https://doi.org/10.1007/s10762-020-00726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00726-x

Keywords

Navigation