Skip to main content
Log in

Understanding the Formation of 5-(Diethylammoniothio)-1,3-dimethylbarbituric Acid: Crystal Structure and DFT Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

5-(Diethylammoniothio)-1,3-dimethylbarbituric acid (8) was obtained in good yield from the reaction of 5-bromo-1,3-dimethylbarbituric acid (5) and 1,3-diethylthiourea. The obtained product has been characterized using different techniques including single-crystal X-ray diffraction, FTIR, MS and NMR spectroscopy. For this reaction, a detailed computational study of the reaction steps has been performed using density functional theory (DFT). Both thermodynamic and kinetic parameters were calculated. Step B is the most favorable reaction with an activation energy of 33 kJ mol−1 using the solvation model that based on the solvent model density (SMD) calculated at B3LYP/6-31G(d).

Graphic abstract

The rate-determining step of the most plausible mechanism involves the formation of C-S bond via proton transfer to oxygen (intramolecular attraction) with an activation barrier of 33 kJ mol-1 using the solvation model that based on density (SMD) solvent model calculated at B3LYP/6-31G(d).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barakat A, Islam MS, Al-Majid AM, Soliman SM, Mabkhot YN, Al-Othman ZA, Ghabbour HA, Fun H-K (2015) Synthesis of novel 5-monoalkylbarbiturate derivatives: new access to 1, 2-oxazepines. Tetrahedron Lett 56(50):6984–6987

    Article  CAS  Google Scholar 

  2. Sharma A, Jad Y, Siddiqui MR, Torre BG, Albericio F, El-Faham A (2017) Synthesis, characterization, and tautomerism of 1, 3-dimethyl pyrimidine-2, 4, 6-trione s-triazinyl hydrazine/hydrazone derivatives. J Chem 2017

  3. Sweidan K, Abu-Salem Q, Al-Sheikh A, Sheikha GA (2009) Novel derivatives of 1, 3-dimethyl-5-methylenebarbituric acid. Lett Org Chem 6(8):669–672

    Article  CAS  Google Scholar 

  4. Mallah E, Sweidan K, Engelmann J, Steimann M, Kuhn N, Maier ME (2012) Nucleophilic substitution approach towards 1, 3-dimethylbarbituric acid derivatives—new synthetic routes and crystal structures. Tetrahedron 68(4):1005–1010

    Article  CAS  Google Scholar 

  5. Al-Sheikh A, Sweidan K, Sweileh B, Steimann M, Schubert H, Kuhn N (2008) Synthesis and crystal structure of triethylammonium 5-[(2, 2-dimethyl-4, 6-dioxo-1, 3-dioxan-5-ylidene)(methylthio) methyl]-1, 3-dimethylpyrimidine-2, 4, 6-trionate. Z Naturforsch B 63(8):1020–1022

    Article  CAS  Google Scholar 

  6. Sweidan K, Al-Sheikh A, Sweileh B, Sunjuk M, Kuhn N (2009) Synthesis of phosphorus, arsenic and antimony ylides containing the 1, 3-dimethyl-2, 4, 6 (1H, 3H, 5H)-pyrimidinetrione fragments. Lett Org Chem 6(1):1–3

    Article  CAS  Google Scholar 

  7. Zade MN, Katiya MM, Sontakke MM, Dhonde MG, Berad BN, Thakare VJ, Bhaskar CS (2018) CS and CN coupling reactions of barbituric acid via selective and complete bromination using greener KBr/H2O2 as a brominating agent. J Indian Chem Soc 95(5):553–558

    CAS  Google Scholar 

  8. Franssen M, Van der Plas H (1987) The chlorination of barbituric acid and some of its derivatives by chloroperoxidase. Bioorg Chem 15(1):59–70

    Article  CAS  Google Scholar 

  9. Sweidan K, Rayyan WA, Zarga MA, El-Abadelah M, Mohammad AY (2014) Synthesis and antibacterial evaluation of model fluoroquinolone-benzylidene barbiturate hybrids. Lett Org Chem 11(6):422–425

    Article  CAS  Google Scholar 

  10. Sweidan K, El-Abadelah MM, Haddad SF, Voelter W (2015) Synthesis and characterization of some new fluoroquinolone-barbiturate hybrid systems. Z Naturforschung B 70(7):513–517

    Article  CAS  Google Scholar 

  11. Chakravarthy RD, Ramkumar V, Chand DK (2014) A molybdenum based metallomicellar catalyst for controlled and selective sulfoxidation reactions in aqueous medium. Green Chem 16(4):2190–2196

    Article  CAS  Google Scholar 

  12. Sipos G, Drinkel EE, Dorta R (2015) The emergence of sulfoxides as efficient ligands in transition metal catalysis. Chem Soc Rev 44(11):3834–3860

    Article  CAS  Google Scholar 

  13. Yu X, Liu Y, Li Y, Wang Q (2016) Design, synthesis, acaricidal/insecticidal activity, and structure-activity relationship studies of novel oxazolines containing sulfone/sulfoxide groups based on the sulfonylurea receptor protein-binding site. J Agric Food Chem 64(15):3034–3040

    Article  CAS  Google Scholar 

  14. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64(1):112–122

    Article  CAS  Google Scholar 

  15. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16, revision a.03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  16. Sweidan K, AlDamen MA, Maichle-Mößmer C, Mubarak MS (2012) Synthesis, crystal structure and thermodynamic calculations of 1, 3-diethyl-5-(diethylaminium) methylene-2-thiobarbituric acid adduct. J Chem Crystallogr 42(5):427–431

    Article  CAS  Google Scholar 

  17. Ralhan S, Ray N (2003) Density functional study of barbituric acid and its tautomers. J Mol Struct Theochem 634(1–3):83–88

    Article  CAS  Google Scholar 

  18. Notario R (2014) A computational study of 2-selenobarbituric acid: conformational analysis, enthalpy of formation, acidity and basicity. Procedia Comput Sci 29:1356–1365

    Article  Google Scholar 

  19. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107(20):8554–8560

    Article  CAS  Google Scholar 

  20. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  Google Scholar 

  21. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14(12):363–368

    Article  CAS  Google Scholar 

  22. Nemeryuk M, Arutyunyan T, Shatukhina E, Nerseyan N, Anisimova O, Soloveva N, Peresleni E, Sheinker YN, Sokol O, Kazakova V (1989) 6, 7, 8, 9-Tetrahydrodipyrimido [4, 5-b][4′, 5′-e][1, 4] thiazine derivatives. Synthesis and structure. Chem Heterocycl Compd 25(2):214–220

    Article  Google Scholar 

  23. Sweidan K, Dayyih WA, AlDamen MA, Mallah E, Arafat T, El-Abadelah MM, Salih H, Voelter W (2017) Ring opening of cyclobutane in 1, 3-dimethyl-5-methylenebarbituric acid dimer by various nucleophiles. Z Naturforschung B 72(5):377–382

    Article  CAS  Google Scholar 

  24. Sweidan K, AlDamen MA, Sinnokrotb MO, Al-Sheikhc A, Mubaraka MS (2017) Stabilization of meldrum's acid dimer and 1, 3-dimethylbarbituric acid trimer: a theoretical study. Jordan J Chem 12(1):1–10

    CAS  Google Scholar 

  25. AlDamen MA, Mubarak MS (2013) Theoretical and experimental study of lone pair interactions in THF/chloranilic acid system. Struct Chem 24(1):215–222

    Article  CAS  Google Scholar 

  26. Manivel P, Prabakaran K, Krishnakumar V, Nawaz Khan F-R, Maiyalagan T (2014) Thiourea-mediated regioselective synthesis of symmetrical and unsymmetrical diversified thioethers. Ind Eng Chem Res 53(19):7866–7870

    Article  CAS  Google Scholar 

  27. Mallah E, Al-Sheikh A, Sweidan K, Abu Dayyih W, Steimann M (2015) Crystal structure of 5-[bis (methylsulfonyl) methyl]-1, 3-dimethyl-5-(methylsulfonyl) pyrimidine-2, 4, 6 (1H, 3H, 5H)-trione. Acta Crystallogr E 71(1):o58–o59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansour H. Almatarneh or Murad A. AlDamen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10870_2020_846_MOESM1_ESM.docx

Additional Supporting Information may be found online in the supporting information tab for this article. X-ray crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre (compound 8: CCDC No. 1981657). Potential energy diagram for steps A and B along with the Cartesians coordinates for all stationary points for proposed mechanisms and thermochemical data. CIF files containing complete information on the studied structures may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK, Fax 0044-1223- 336033; E-mail:deposit@ccdc.cam.ac.uk or from the following web site: www.ccdc.cam.ac.uk/data_request/cif. Supplementary file1 (DOCX 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweidan, K., Almatarneh, M.H., AlDamen, M.A. et al. Understanding the Formation of 5-(Diethylammoniothio)-1,3-dimethylbarbituric Acid: Crystal Structure and DFT Studies. J Chem Crystallogr 51, 215–224 (2021). https://doi.org/10.1007/s10870-020-00846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00846-1

Keywords

Navigation