Skip to main content
Log in

Kinetics of Reverted Austenite in 18 wt.% Ni Grade 300 Maraging Steel: An In-Situ Synchrotron X-Ray Diffraction and Texture Study

  • Interfacial Stability in Multi-component Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, we investigated the transformation kinetics of martensite → reverted austenite in 18 wt.% grade 300 Ni maraging steel. The kinetics was evaluated based on the in situ synchrotron x-ray diffraction data collected during isothermal heat treatment at 570°C. The onset of transformation martensite → reverted austenite was detected after ~ 5 min of aging. The austenite fraction increased as a function of annealing time and reached approximately 30 vol.% after 3 h of heat treatment. The electron backscatter diffraction technique revealed that reverted austenite is formed preferentially on both the martensitic lath boundaries and sub-grain boundaries inside the laths, in particular in those with high Taylor factor values. The reverted austenite maintains an orientation relationship with the prior austenite; however, variant selection can take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.K. Vasudevan, S.J. Kim, and C.M. Wayman, Metall. Trans. A 21, 2655 (1990).

    Google Scholar 

  2. W. Sha, Scr. Mater. 42, 549 (2000).

    Google Scholar 

  3. S.S.M. Tavares, H.F.G. Abreu, J.M. Neto, M.R. Da Silva, and I. Popa, J. Alloys Compd. 358, 152 (2003).

    Google Scholar 

  4. W. Sha, A. Cerezo, and G.D.W. Smith, Metall. Mater. Trans. A 24, 1241 (1993).

    Google Scholar 

  5. W. Sha, A. Cerezo, and G.D.W. Smith, Metall. Mater. Trans. A 24, 1221 (1993).

    Google Scholar 

  6. U.K. Viswanathan, G.K. Dey, and M.K. Asundi, Metall. Trans. A 24, 2429 (1993).

    Google Scholar 

  7. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.-P. Choi, Acta Mater. 61, 6132 (2013).

    Google Scholar 

  8. O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, and D. Raabe, Acta Mater. 59, 364 (2011).

    Google Scholar 

  9. M. Farooque, H. Ayub, A.U. Haq, and A.Q. Khan, J. Mater. Sci. 33, 2927 (1998).

    Google Scholar 

  10. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.-P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).

    Google Scholar 

  11. M. Belde, H. Springer, G. Inden, and D. Raabe, Acta Mater. 86, 1 (2015).

    Google Scholar 

  12. J. Mittra, G.K. Dey, D. Sen, A.K. Patra, S. Mazumder, and P.K. De, Scr. Mater. 51, 34953 (2004).

    Google Scholar 

  13. R. Schnitzer, G.A. Zickler, E. Lach, H. Clemens, S. Zinner, T. Lippmann, and H. Leitner, Mater. Sci. Eng., A 527, 2065 (2010).

    Google Scholar 

  14. P.W. Hochanadel, G.R. Edwards, C.V. Robino, and M.J. Cieslak, Metall. Mater. Trans. A 25, 789 (1994).

    Google Scholar 

  15. J.-M. Cloué, B. Viguier, and E. Andrieu, Metall. Mater. Trans. A 36, 2633 (2005).

    Google Scholar 

  16. J. Suryawanshi, K.G. Prashanth, and U. Ramamurty, J. Alloys Compd. 725, 355 (2017).

    Google Scholar 

  17. E.V. Pereloma, A. Shekhter, M.K. Miller, and S.P. Ringer, Acta Mater. 52, 5589 (2004).

    Google Scholar 

  18. M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe, Acta Mater. 79, 268 (2014).

    Google Scholar 

  19. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scr. Mater. 68, 321 (2013).

    Google Scholar 

  20. S. Lee, S.-J. Lee, and B.C. De Cooman, Scr. Mater. 65, 225 (2011).

    Google Scholar 

  21. C.A. Pampillo and H.W. Paxton, Metall. Trans. 3, 2895 (1972).

    Google Scholar 

  22. R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, E. Povoden-Karadeniz, E. Kozeschnik, and H. Leitner, Mater. Chem. Phys. 122, 138 (2010).

    Google Scholar 

  23. J.M. Pardal, S.S.M. Tavares, V.F. Terra, M.R. da Silva, and D.R. dos Santos, J. Alloys Compd. 393, 109 (2005).

    Google Scholar 

  24. F. Habiby, T.N. Siddiqui, S.H. Khan, and A.Q. Khan, NDT E Int. 25, 145 (1992).

    Google Scholar 

  25. S.H. Khan, A.N. Khan, F. Ali, M.A. Iqbal, and H.K. Shukaib, J. Alloys Compd. 474, 254 (2009).

    Google Scholar 

  26. X. Li and Z. Yin, Mater. Lett. 24, 239 (1995).

    Google Scholar 

  27. G.M.C. Güiza and C.A.S. Oliveira, Mater. Sci. Eng., A 655, 142 (2016).

    Google Scholar 

  28. G.C.S. Nunes, P.W.C. Sarvezuk, T.J.B. Alves, V. Biondo, F.F. Ivashita, and A. Paesano Jr, J. Magn. Magn. Mater. 421, 457 (2017).

    Google Scholar 

  29. Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, and Y.Y. Li, Mater. Lett. 64, 1411 (2010).

    Google Scholar 

  30. N.F. Viana, S. Nunes, and H.F.G. de Abreu, J. Mater. Res. Technol. 2, 298 (2013).

    Google Scholar 

  31. N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, ISIJ Int. 47, 1527 (2007).

    Google Scholar 

  32. A. Markfeld and A. Rosen, Mater. Sci. Eng. 46, 151 (1980).

    Google Scholar 

  33. G.A. Zickler, R. Schnitzer, R. Hochfellner, T. Lippmann, S. Zinner, and H. Leitner, Int. J. Mater. Res. 100, 1566 (2009).

    Google Scholar 

  34. Y. Katz, H. Mathias, and S. Nadiv, Metall. Trans. A 14, 801 (1983).

    Google Scholar 

  35. J.M. Pardal, S.S.M. Tavares, M.P.C. Fonseca, H.F.G. Abreu, and J.J.M. Silva, J. Mater. Sci. 41, 2301 (2006).

    Google Scholar 

  36. N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, and Y.D. Wang, Acta Mater. 57, 3965 (2009).

    Google Scholar 

  37. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. Van der Zwaag, and N.H. Van Dijk, Acta Mater. 60, 565 (2012).

    Google Scholar 

  38. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, and F. Delannay, Acta Mater. 55, 3681 (2007).

    Google Scholar 

  39. J. Mu, Z. Zhu, R. Su, Y. Wang, H. Zhang, and Y. Ren, Acta Mater. 61, 5008 (2013).

    Google Scholar 

  40. J. Zhang, S. Hao, D. Jiang, Y. Huan, L. Cui, Y. Liu, H. Yang, and Y. Ren, Acta Mater. 130, 297 (2017).

    Google Scholar 

  41. M. Wiessner, E. Gamsjäger, S. van der Zwaag, and P. Angerer, Mater. Sci. Eng., A 682, 117 (2017).

    Google Scholar 

  42. E. Eidenberger, M. Schober, E. Stergar, H. Leitner, P. Staron, and H. Clemens, Metall. Mater. Trans. A 41, 1230 (2010).

    Google Scholar 

  43. P. Staron, T. Fischer, T. Lippmann, A. Stark, S. Daneshpour, D. Schnubel, E. Uhlmann, R. Gerstenberger, B. Camin, and W. Reimers, Adv. Eng. Mater. 13, 658 (2011).

    Google Scholar 

  44. J.W. Elmer, T.A. Palmer, and E.D. Specht, Metall. Mater. Trans. A 38, 464 (2007).

    Google Scholar 

  45. S. Ackermann, S. Martin, M.R. Schwarz, C. Schimpf, D. Kulawinski, C. Lathe, S. Henkel, D. Rafaja, H. Biermann, and A. Weidner, Metall. Mater. Trans. A 47, 95 (2016).

    Google Scholar 

  46. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H. Bhadeshia, Metall. Mater. Trans. A 36, 3281 (2005).

    Google Scholar 

  47. J. Epp, T. Hirsch, and C. Curfs, Metall. Mater. Trans. A 43, 2210 (2012).

    Google Scholar 

  48. F.F. Conde, J.D. Escobar, J.P. Oliveira, A.L. Jardini, W.W. Bose Filho, and J.A. Avila, Addit. Manuf. 29, 100804 (2019).

    Google Scholar 

  49. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe, Acta Mater. 60, 2790 (2012).

    Google Scholar 

  50. S.-H. Mun, M. Watanabe, D.B. Williams, X. Li, K.H. Oh, and H.-C. Lee, Metall. Mater. Trans. A 33, 1057 (2002).

    Google Scholar 

  51. H. Springer, M. Belde, and D. Raabe, Mater. Sci. Eng., A 582, 235 (2013).

    Google Scholar 

  52. H.M. Rietveld, Acta Crystallogr. 20, 508 (1966).

    Google Scholar 

  53. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Google Scholar 

  54. T. Roisnel and J. Rodríquez-Carvajal, Mater. Sci. Forum 378, 118 (1999).

    Google Scholar 

  55. R.J. Hill and C.J. Howard, J. Appl. Crystallogr. 20, 467 (1987).

    Google Scholar 

  56. S.S.M. Tavares, M.R. Da Silva, J.M. Neto, J.M. Pardal, M.P.C. Fonseca, and H.F.G. Abreu, J. Alloys Compd. 373, 304 (2004).

    Google Scholar 

  57. G.C.S. Nunes, P.W.C. Sarvezuk, V. Biondo, M.C. Blanco, M.V.S. Nunes, A.M.H. De Andrade, and A. Paesano, Jr. J. Alloys Compd. 646, 321 (2015).

    Google Scholar 

  58. F. Habiby, T.N. Siddiqui, H. Hussain, A.U. Haq, and A.Q. Khan, J. Mater. Sci. 31, 305 (1996).

    Google Scholar 

  59. O. Thuillier, F. Danoix, M. Gouné, and D. Blavette, Scr. Mater. 55, 1071 (2006).

    Google Scholar 

  60. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Mater. Sci. Eng., A 438, 25 (2006).

    Google Scholar 

  61. E.I. Galindo-Nava, W.M. Rainforth, and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 117, 270 (2016).

    Google Scholar 

  62. J.M. Rosenberg and H.R. Piehler, Metall. Trans. 2, 257 (1971).

    Google Scholar 

  63. G.I. Taylor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  64. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Int. J. Plast 21, 589 (2005).

    Google Scholar 

  65. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8, 219 (2004).

    Google Scholar 

  66. F. Qian and W.M. Rainforth, J. Mater. Sci. 54, 6624 (2019).

    Google Scholar 

  67. S. Kundu, Transformation strain and crystallographic texture in steels, Ph.D. Thesis, University of Cambridge (2007).

Download references

Acknowledgements

Experimental support of Mr. F.E. Montoro, Dr. O.R. Bagnato and Dr. A.L. Gobbi (Projects SEM 21795 and LMF 20869) at Brazilian Nanotechnology National Laboratory-LNNano is acknowledged. Microstructural characterization was performed at the Analytical Centre-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos CAPES and LNNano. The authors acknowledge the Brazilian Synchrotron Light Laboratory-LNLS for the use of the XTMS installation at the XRD-1 beamline. This study used the resources of the Brazilian Synchrotron Light Laboratory (Project 20170162), an open national facility operated by the Brazilian Center for Research in Energy and Materials for the Brazilian Ministry for Science, Technology, Innovations and Communications. This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Paulo Mourão dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, L.P.M., Béreš, M., de Castro, M.O. et al. Kinetics of Reverted Austenite in 18 wt.% Ni Grade 300 Maraging Steel: An In-Situ Synchrotron X-Ray Diffraction and Texture Study. JOM 72, 3502–3512 (2020). https://doi.org/10.1007/s11837-020-04254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04254-w

Navigation