Skip to main content
Log in

Variability of Extra Tropical Atmospheric Circulation and Periodic Trajectories in Simplified Models of Atmospheric Dynamics

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The possibility for approximate basic statistical characteristics of atmospheric models using periodic trajectories (closed solutions of equations of dynamics) is considered. The possibility of this approximation is based on ideas of the theory of dynamical systems which states that, in some important particular cases (e.g., for hyperbolic systems), the periodic trajectories define the invariant system measure related to a notion of the system climate. It is shown that this approximation also is possible in the case of the atmospheric models under consideration. Moreover, the principal modes of circulation variability are implemented as clusters of periodic orbits oriented along the leading eigenvectors of dynamical operators of models linearized with respect to their mean states. The analysis of observational data shows that probably the same conclusion could also be made for the real atmospheric circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. G. Rossby et al., “Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action,” J. Mar. Res. 2, 38–55 (1939).

    Article  Google Scholar 

  2. J. G. Charney, “The dynamics of long waves in a baroclinic westerly current,” J. Meteorol. 4, 135–162 (1947).

    Article  Google Scholar 

  3. E. T. Eady, “Long waves and cyclone waves,” Tellus 1, 33–52 (1949).

    Article  Google Scholar 

  4. A. J. Simmons and B. J. Hoskins, “Baroclinic instability on the sphere: Normal modes of the primitive and quasigeostrophic equations,” J. Atmos. Sci. 33, 1454–1477 (1976).

    Article  Google Scholar 

  5. J. S. Frederiksen, “A unified three-dimensional instability theory of the onset of blocking and cyclogenesis,” J. Atmos. Sci. 39, 969–982 (1982).

    Article  Google Scholar 

  6. V. P. Dymnikov, “On the connection between the orthogonal components of meteoelement fields to the eige-nfunctions of the dynamic operators,” Izv., Acad. Sci., USSR, Atmos. Oceanic Phys. (Engl. Transl.) 24 (7), 675–683 (1988).

  7. K. Hasselmann, “PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns,” J. Geophys. Res. 93, 11015–11021 (1988).

    Article  Google Scholar 

  8. H. H. von Storch, T. Bruns, I. Fischer-Bruns, and K. Hasselmann, “Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere,” J. Geophys. Res. 93, 11022–11036 (1988).

    Article  Google Scholar 

  9. H. H. von Storch, U. Weese, and J. S. Xu, “Simultaneous analysis of space-time variability: Principal oscillation patterns and principal interaction patterns with applications to the Southern Oscillation,” Z. Meteorol. 40, 99–103 (1990).

    Google Scholar 

  10. J.-S. Xu, “Predicting the state of the Southern Oscillation using principal oscillation pattern analysis,” J. Clim. 3, 1316–1329 (1990).

    Article  Google Scholar 

  11. R. Schnur, G. Schmitz, N. Grieger, and H. von Storch, “Normal modes of the atmosphere as estimated by principal oscillation patterns and derived from quasigeostrophic theory,” J. Atmos. Sci. 50, 2386–2400 (1993).

    Article  Google Scholar 

  12. J. G. Charney and J. G. DeVore, “Multiple flow equilibria in the atmosphere and blocking,” J. Atmos. Sci. 36, 1205–1216 (1979).

    Article  Google Scholar 

  13. B. Legras and M. Ghil, “Persistent anomalies, blocking and variations in atmospheric predictability,” J. Atmos. Sci. 42, 433–471 (1985).

    Article  Google Scholar 

  14. K. Mo and M. Ghil, “Cluster analysis of multiple planetary flow regimes,” J. Geophys. Res.: Atmos. 93, 10927–10952 (1988).

    Article  Google Scholar 

  15. V. P. Dymnikov and E. V. Kazantsev, “Structure of an attractor generated by the system of equations of a barotropic atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 29, 581–595 (1993).

    Google Scholar 

  16. K. Vautard, K. Mo, and M. Ghil, “Statistical significance test for transition matrices of atmospheric Markov chains,” J. Atmos. Sci. 47, 1926–1931 (1990).

    Article  Google Scholar 

  17. M. Kimoto and M. Ghil, “Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions,” J. Atmos. Sci. 50, 2645–2673 (1993).

    Article  Google Scholar 

  18. D. Kondrashov, K. Ide, and M. Ghil, “Weather regimes and preferred transition paths in a three-level quasigeostrophic model,” J. Atmos. Sci. 61, 568–587 (2004).

    Article  Google Scholar 

  19. A. J. Majda, C. L. Franzke, A. Fischer, and D. T. Crommelin, “Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model,” Proc. Natl. Acad. Sci. U. S. A. 103, 8309–8314 (2006).

    Article  Google Scholar 

  20. C. Franzke, D. Crommelin, A. Fischer, and A. J. Majda, “A hidden Markov model perspective on regimes and metastability in atmospheric flows,” J. Clim. 21, 1740–1757 (2008).

    Article  Google Scholar 

  21. R. Bowen, “Periodic points and measures for axiom A diffeomorphisms,” Trans. Am. Math. Soc. 154, 377–397 (1971).

    Google Scholar 

  22. R. Bowen, “Periodic orbits for hyperbolic flows,” Am. J. Math. 94, 1–30 (1972).

    Article  Google Scholar 

  23. D. Auerbach, P. Cvitanovic, J. -P. Eckmann, G. Gunaratne, and I. Procaccia, “Exploring chaotic motion through periodic orbits,” Phys. Rev. Lett. 58, 2387–2389 (1987).

    Article  Google Scholar 

  24. D. Ruelle, “Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics,” J. Stat. Phys. 95, 393–468 (1999).

    Article  Google Scholar 

  25. V. Dymnikov and A. Filatov, Mathematics of Climate Modelling (Birkhauser, Boston, 1997).

    Google Scholar 

  26. G. Gallavotti, “Chaotic dynamics, fluctuations, nonequilibrium ensembles,” Chaos 8 (2), 384–392 (1998).

    Article  Google Scholar 

  27. E. Kazantsev, “Unstable periodic orbits and attractor of the barotropic ocean model,” Nonlinear Proc. Geophys. 5, 281–300 (1998).

    Article  Google Scholar 

  28. F. M. Selten and G. Branstator, “Preferred regime transition routes and evidence for an unstable periodic orbit in a baroclinic model,” J. Atmos. Sci. 61, 2267–2282 (2004).

    Article  Google Scholar 

  29. A. Gritsun, “Unstable periodic trajectories of a barotropic model of the atmosphere,” Russ. J. Num. Anal. Math. Modell. 23 (4), 345–367 (2008).

    Google Scholar 

  30. A. S. Gritsun, “Statistical characteristics of barotropic atmospheric system and its unstable periodic solutions,” Dokl. Earth Sci. 435, 1688–1691 (2010).

    Article  Google Scholar 

  31. A. Gritsun, “Connection of periodic orbits and variability patterns of circulation for the barotropic model of atmospheric dynamics,” Dokl. Earth Sci. 438, 636–640 (2011).

    Article  Google Scholar 

  32. A. Gritsun, “Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model,” Philos. Trans. R. Soc., A 371, 20120336 (2013).

  33. J. Marshall and F. Molteni, “Toward a dynamical understanding of planetary scale flow regimes,” J. Atmos. Sci. 50, 1792–1818 (1993).

    Article  Google Scholar 

  34. G. P. Kurbatkin, V. N. Sinyaev, and A. G. Yantsen, “Spectral model of a long-term prognosis with average climatic restrictions,” Izv., Acad. Sci., USSR, Atmos. Oceanic Phys. 9 (11), 3–8 (1973).

    Google Scholar 

  35. C. Franzke, A. Majda, and E. Vanden-Eijnden, “Low-order stochastic mode reduction for a realistic barotropic model climate,” J. Atmos. Sci. 62, 1722–1745 (2005).

    Article  Google Scholar 

  36. V. P. Dymnikov and A. S. Gritsun, “Barotropic instability and the structure of low-frequency variability of circulation generated by a two-layer baroclinic atmosphere model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32 (5), 535–538 (1996).

    Google Scholar 

  37. H. von Storch and F. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, and M. Metcalf, Numerical Recipes in Fortran 90 (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

Download references

Funding

This work was supported by the Moscow Center of Fundamental and Applied Mathematics (development of methods of the search for periodic trajectories) and the Russian Foundation for Basic Research, project no. 17-55-10012 KO_a (analysis of models).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gritsun.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsun, A.S. Variability of Extra Tropical Atmospheric Circulation and Periodic Trajectories in Simplified Models of Atmospheric Dynamics. Izv. Atmos. Ocean. Phys. 56, 229–240 (2020). https://doi.org/10.1134/S0001433820030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820030093

Keywords:

Navigation