Skip to main content
Log in

The Influence of Bifidobacterium bifidum and Bacteroides fragilis on Enteric Glial Cell–Derived Neurotrophic Factors and Inflammasome

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Enteric glial cells (EGCs) and enteric glial–derived neurotrophic factor (GDNF) are directly involved in intestinal inflammation. In this study, we sought to examine the possible mechanisms for how Bifidobacterium bifidum (B.b.) and Bacteroides fragilis (B.f.) influence EGC regulation. In this study, lipopolysaccharide (LPS) and interferon-γ (IFN-γ) were used as exogenous stimuli of EGCs to establish an intestinal inflammation model. After stimulation with LPS and IFN-γ, B.b. and B.f. supernatants were used to activate EGCs and to examine EGC immune mechanisms. For this purpose, qRT-PCR, western blotting, and laser scanning confocal microscopy (LSCM) were used to detect the expression of NLRP3, NLRP6, NGF, NT-3, IL-18, IL-1β, and caspase-1. We found that EGCs, after stimulation with LPS and IFN-γ, could express NLRP3, NLRP6, NT-3, NGF, IL-18, IL-1β, and caspase-1 through LSCM. In intestinal inflammation, B.b. and B.f. could trigger an increase in NGF and NT-3 expression in EGCs in order to protect the intestine. Furthermore, B.b. and B.f. could upregulate NLRP3 expression in EGCs and promote an inflammatory response. B.b. had a dual regulatory role in EGC NLRP6 expression, while B.f. inhibited NLRP6 protein expression. Moreover, B.b. could decrease the expression of IL-18, IL-1β, and caspase-1 in EGCs in order to inhibit the inflammatory response. Contrary to this, B.f. could upregulate IL-18, IL-1β, and caspase-1 expression in EGCs in order to promote the inflammatory response. B.b. and B.f. can influence the expression of NGF, NT-3, NLRP3, NLRP6, IL-18, IL-1β, and caspase-1 in EGCs in order to inhibit or promote intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

Abbreviations

B.b.:

Bifidobacterium bifidum

B.f.:

Bacteroides fragilis

EGCs:

enteric glial cells

LPS:

lipopolysaccharide

IFN-p:

interferon-c

qRT-PCR:

quantitative real-time PCR

LSCM:

laser scanning confocal microscopy

IBS:

irritable bowel syndrome

PI-IBS:

post-infection IBS

GFAP:

glial fibrillary acidic protein

CD:

Crohnfibrillary

NLR:

NOD-like receptor

GDNF:

neurotrophic factors

NGF:

nerve growth factor

NT-3:

neurotrophin 3

SD:

Sprague-Dawley

References

  1. Serra, J., F. Azpiroz, and J.R. Malagelada. 2001. Impaired transit and tolerance of intestinal gas in the irritable bowel syndrome. Gut 48: 14–19.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Serra, J., A. Villoria, F. Azpiroz, B. Lobo, J. Santos, A. Accarino, et al. 2010. Impaired intestinal gas propulsion in manometrically proven dysmotility and in irritable bowel syndrome. Neurogastroenterology and Motility 22 (401-406): e491–e402.

    Google Scholar 

  3. Whitehead, W.E., O.S. Palsson, R.R. Levy, A.D. Feld, T. Marsha, and V.K. Michael. 2007. Comorbidity in irritable bowel syndrome. American Journal of Gastroenterology 102: 2767–2776.

    Google Scholar 

  4. Barbara, G., R. De Giorgio, V. Stanghellini, C. Cremon, and R. Corinaldesi. 2002. A role for inflammation in irritable bowel syndrome? Gut 51 (Suppl 1): i41–i44.

    PubMed  PubMed Central  Google Scholar 

  5. Chen, J., Y. Zhang, and Z. Deng. 2012. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterology 12: 91.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Spiller, R., and K. Garsed. 2009. Infection, inflammation, and the irritable bowel syndrome. Digestive and Liver Disease 41: 844–849.

    PubMed  CAS  Google Scholar 

  7. Ghoshal, U.C., and P. Ranjan. 2011. Post-infectious irritable bowel syndrome: the past, the present and the future. Journal of Gastroenterology and Hepatology 26 (Suppl 3): 94–101.

    PubMed  Google Scholar 

  8. Simren, M., J. Svedlund, I. Posserud, E.S. Bjornsson, and H. Abrahamsson. 2006. Health-related quality of life in patients attending a gastroenterology outpatient clinic: functional disorders versus organic diseases. Clinical Gastroenterology and Hepatology 4: 187–195.

    PubMed  Google Scholar 

  9. Simren, M., G. Barbara, H.J. Flint, B.M. Spiegel, R.C. Spiller, S. Vanner, et al. 2013. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62: 159–176.

    PubMed  Google Scholar 

  10. Aguilera, M., T. Darby, and S. Melgar. 2014. The complex role of inflammasomes in the pathogenesis of inflammatory bowel diseases - lessons learned from experimental models. Cytokine & Growth Factor Reviews 25: 715–730.

    CAS  Google Scholar 

  11. Gagliani, N., N.W. Palm, M.R. de Zoete, and R.A. Flavell. 2014. Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota. International Immunology 26: 495–499.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Henao-Mejia, J., E. Elinav, C. Jin, L. Hao, W.Z. Mehal, T. Strowig, C.A. Thaiss, A.L. Kau, S.C. Eisenbarth, M.J. Jurczak, J.P. Camporez, G.I. Shulman, J.I. Gordon, H.M. Hoffman, and R.A. Flavell. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179–185.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481: 278–286.

    PubMed  CAS  Google Scholar 

  14. Lunov, O., T. Syrovets, C. Loos, G.U. Nienhaus, V. Mailander, K. Landfester, et al. 2011. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5: 9648–9657.

    PubMed  CAS  Google Scholar 

  15. Kersse, K., M.J. Bertrand, M. Lamkanfi, and P. Vandenabeele. 2011. NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine & Growth Factor Reviews 22: 257–276.

    CAS  Google Scholar 

  16. Xiao, W., W. Wang, W. Chen, L. Sun, X. Li, C. Zhang, and H. Yang. 2014. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Molecular Neurobiology 50: 274–289.

    PubMed  CAS  Google Scholar 

  17. Steinkamp, M., H. Gundel, N. Schulte, U. Spaniol, C. Pflueger, E. Zizer, and G.B.T. von Boyen. 2012. GDNF protects enteric glia from apoptosis: evidence for an autocrine loop. BMC Gastroenterology 12: 6.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Dinan, T.G., and J.F. Cryan. 2015. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Current Opinion in Clinical Nutrition and Metabolic Care 18: 552–558.

    PubMed  Google Scholar 

  19. Hooper, L.V., M.H. Wong, A. Thelin, L. Hansson, P.G. Falk, and J.I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881–884.

    PubMed  CAS  Google Scholar 

  20. Bravo, J.A., P. Forsythe, M.V. Chew, E. Escaravage, H.M. Savignac, T.G. Dinan, J. Bienenstock, and J.F. Cryan. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America 108: 16050–16055.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Verdu, E.F., P. Bercik, M. Verma-Gandhu, X.X. Huang, P. Blennerhassett, W. Jackson, et al. 2006. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55: 182–190.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. O'Mahony, L., J. McCarthy, P. Kelly, G. Hurley, F. Luo, K. Chen, et al. 2005. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128: 541–551.

    PubMed  Google Scholar 

  23. Collins, S.M. 2014. A role for the gut microbiota in IBS. Nature Reviews. Gastroenterology & Hepatology 11: 497–505.

    CAS  Google Scholar 

  24. Bixquert, Jimenez M. 2009. Treatment of irritable bowel syndrome with probiotics. An etiopathogenic approach at last? Revista Española de Enfermedades Digestivas 101: 553–564.

    Google Scholar 

  25. Schneiderhan, J., T. Master-Hunter, and A. Locke. 2016. Targeting gut flora to treat and prevent disease. The Journal of Family Practice 65: 34–38.

    PubMed  Google Scholar 

  26. Edmiston, C.E., Jr., C.J. Krepel, G.R. Seabrook, and W.G. Jochimsen. 2002. Anaerobic infections in the surgical patient: microbial etiology and therapy. Clinical Infectious Diseases 35: S112–S118.

    PubMed  Google Scholar 

  27. Jacobson, A., L. Lam, M. Rajendram, F. Tamburini, J. Honeycutt, T. Pham, et al. 2018. A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host & Microbe 24: 296–307 e297.

    CAS  Google Scholar 

  28. Coelho-Aguiar Jde, M., A.C. Bon-Frauches, A.L. Gomes, C.P. Verissimo, D.P. Aguiar, D. Matias, et al. 2015. The enteric glia: identity and functions. Glia 63: 921–935.

    PubMed  Google Scholar 

  29. De Giorgio, R., F. Giancola, E. Boschetti, H. Abdo, B. Lardeux, and M. Neunlist. 2012. Enteric glia and neuroprotection: basic and clinical aspects. American Journal of Physiology. Gastrointestinal and Liver Physiology 303: G887–G893.

    PubMed  Google Scholar 

  30. von Boyen, G.B., N. Schulte, C. Pfluger, U. Spaniol, C. Hartmann, and M. Steinkamp. 2011. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterology 11: 3.

    Google Scholar 

  31. von Boyen, G.B., N. Degenkolb, C. Hartmann, G. Adler, and M. Steinkamp. 2010. The endothelin axis influences enteric glia cell functions. Medical Science Monitor 16: BR161–BR167.

    Google Scholar 

  32. Levy, M., C.A. Thaiss, D. Zeevi, L. Dohnalova, G. Zilberman-Schapira, J.A. Mahdi, et al. 2015. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163: 1428–1443.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Liu, W., W. Guo, J. Wu, Q. Luo, F. Tao, Y. Gu, Y. Shen, J. Li, R. Tan, Q. Xu, and Y. Sun. 2013. A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochemical Pharmacology 85: 1504–1512.

    PubMed  CAS  Google Scholar 

  34. Zhang, J., S. Fu, S. Sun, Z. Li, and B. Guo. 2014. Inflammasome activation has an important role in the development of spontaneous colitis. Mucosal Immunology 7: 1139–1150.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Brereton, C.F., C.E. Sutton, P.J. Ross, Y. Iwakura, M. Pizza, R. Rappuoli, E.C. Lavelle, and K.H.G. Mills. 2011. Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. Journal of Immunology 186: 5896–5906.

    CAS  Google Scholar 

  36. De la Fuente, M., L. Franchi, D. Araya, D. Diaz-Jimenez, M. Olivares, M. Alvarez-Lobos, et al. 2014. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. International Journal of Medical Microbiology 304: 384–392.

    PubMed  PubMed Central  Google Scholar 

  37. Anand, P.K., R.K. Malireddi, J.R. Lukens, P. Vogel, J. Bertin, M. Lamkanfi, et al. 2012. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488: 389–393.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Levy, M., H. Shapiro, C.A. Thaiss, and E. Elinav. 2017. NLRP6: a multifaceted innate immune sensor. Trends in Immunology 38: 248–260.

    PubMed  CAS  Google Scholar 

  39. Hu, B., E. Elinav, S. Huber, T. Strowig, L. Hao, A. Hafemann, C. Jin, C. Wunderlich, T. Wunderlich, S.C. Eisenbarth, and R.A. Flavell. 2013. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proceedings of the National Academy of Sciences of the United States of America 110: 9862–9867.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Seregin, S.S., N. Golovchenko, B. Schaf, J. Chen, N.A. Pudlo, J. Mitchell, N.T. Baxter, L. Zhao, P.D. Schloss, E.C. Martens, K.A. Eaton, and G.Y. Chen. 2017. NLRP6 protects Il10(-/-) mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Reports 19: 733–745.

    PubMed  CAS  Google Scholar 

  41. Chen, G.Y., M. Liu, F. Wang, J. Bertin, and G. Nunez. 2011. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. Journal of Immunology 186: 7187–7194.

    CAS  Google Scholar 

  42. Elinav, E., T. Strowig, A.L. Kau, J. Henao-Mejia, C.A. Thaiss, C.J. Booth, D.R. Peaper, J. Bertin, S.C. Eisenbarth, J.I. Gordon, and R.A. Flavell. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145: 745–757.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Li, P., H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, J. Salfeld, E. Towne, D. Tracey, S. Wardwell, F.Y. Wei, W. Wong, R. Kamen, and T. Seshadri. 1995. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411.

    PubMed  CAS  Google Scholar 

  44. Sims, J.E., and D.E. Smith. 2010. The IL-1 family: regulators of immunity. Nature Reviews. Immunology 10: 89–102.

    PubMed  CAS  Google Scholar 

  45. Jarry, A., G. Vallette, E. Cassagnau, A. Moreau, C. Bou-Hanna, P. Lemarre, E. Letessier, J.C. le Neel, J.P. Galmiche, and C.L. Laboisse. 1999. Interleukin 1 and interleukin 1beta converting enzyme (caspase 1) expression in the human colonic epithelial barrier. Caspase 1 downregulation in colon cancer. Gut 45: 246–251.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. MacDonald, T.T., G. Monteleone, and S.L. Pender. 2000. Recent developments in the immunology of inflammatory bowel disease. Scandinavian Journal of Immunology 51: 2–9.

    PubMed  CAS  Google Scholar 

  47. Feng, Q., P. Li, C. Salamanca, D. Huntsman, P.C. Leung, and N. Auersperg. 2005. Caspase-1alpha is down-regulated in human ovarian cancer cells and the overexpression of caspase-1alpha induces apoptosis. Cancer Research 65: 8591–8596.

    PubMed  CAS  Google Scholar 

  48. Demirer, S., S. Aydintug, B. Aslim, I. Kepenekci, N. Sengul, O. Evirgen, et al. 2006. Effects of probiotics on radiation-induced intestinal injury in rats. Nutrition 22: 179–186.

    PubMed  CAS  Google Scholar 

  49. Kalliomaki, M., S. Salminen, T. Poussa, H. Arvilommi, and E. Isolauri. 2003. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361: 1869–1871.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Hubei Province (2014CFB688) and the Natural Science Research Project of Hubei Provincial Department of Education (D20141207).

Author information

Authors and Affiliations

Authors

Contributions

Pengchun Yang and Xijun Li performed most of the experiment and data analysis and wrote the manuscript. Wei Qian, Jing Wang, and Qin Wang provided experiment assistance. Shiyu Li and Caihua Yan contributed to the interpretation of the data and analyses. Xiaohua Hou and Chibing Dai performed experimental design and guidance. All of the authors have read and approved the manuscript.

Corresponding author

Correspondence to Chi-bing Dai.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

This study was approved by the ethics committee of Three Gorges University. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Pc., Li, Xj., Yang, Yh. et al. The Influence of Bifidobacterium bifidum and Bacteroides fragilis on Enteric Glial Cell–Derived Neurotrophic Factors and Inflammasome. Inflammation 43, 2166–2177 (2020). https://doi.org/10.1007/s10753-020-01284-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01284-z

Key Words

Navigation