Skip to main content
Log in

A BBR-based congestion control for delay-sensitive real-time applications

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The current User Datagram Protocol (UDP) causes unfairness and bufferbloats to delay sensitive applications due to the uncontrolled congestion and monopolization of available bandwidth.This causes call drops and frequent communication/connection loss in delay sensitive applications such as VoIP. We present a Responsive Control Protocol using Bottleneck Bandwidth and Round trip propagation time (RCP-BBR) as an alternate solution to UDP. RCP-BBR achieves low latency, high throughput, and low call drops ratio by efficiently customizing Transmission Control Protocol (TCP) Bottleneck Bandwidth and Round-trip propagation time (TCP-BBR) congestion control. We conducted comprehensive experiments, and the results show that proposed protocol achieves better throughput over UDP in stable networks. Moreover, in unstable and long-distanced networks, RCP-BBR achieved smaller queues in deep buffers and lower delays as compared to UDP, which performed poorly by keeping delays above the call drop threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://www.isi.edu/nsnam/ns/.

References

  1. Scholz D, Jaeger B, Lukas S, Daniel R, Fabien G, Georg C (2018) Towards a deeper understanding of tcp bbr congestion control. In: 2018 IFIP networking conference (IFIP networking) and workshops, pp 1–9. IEEE

  2. Najjari N, Min G, Hu J, Zhao Z, Wu Y (2017) Performance analysis of wlans with heterogeneous and bursty multimedia traffic. In: GLOBECOM 2017–2017 IEEE global communications conference, pp 1–6. IEEE

  3. Gerber A, Doverspike R (2011) Traffic types and growth in backbone networks. In: Optical fiber communication conference, pp OTuR1. Optical Society of America

  4. Mayo JW, Ukhaneva O (2017) International telecommunications demand. Inf Econ Policy 39:26–35

    Article  Google Scholar 

  5. Baset SA, Schulzrinne H (2004) An analysis of the skype peer-to-peer internet telephony protocol. arXiv preprint arXiv:cs/0412017

  6. Zhang X, Xu Y, Hu H, Liu Y, Guo Z, Wang Y (2012) Profiling skype video calls: rate control and video quality. In: INFOCOM, 2012 proceedings IEEE, pp 621–629. IEEE

  7. Zhang M, Dusi M, John W, Chen C (2009) Analysis of udp traffic usage on internet backbone links. In: Ninth annual international symposium on applications and the internet, 2009. SAINT’09, pp 280–281. IEEE

  8. Chu C-Y, Chen S, Yen Y-C, Yeh S-L, Chu H-H, Huang P (2018) Eq: a qoe-centric rate control mechanism for voip calls. ACM Trans Model Perform Eval Comput Syst 3(1):4:1–4:20

    Article  Google Scholar 

  9. Halepoto IA, Arain AA, Hussain U (2018) Evaluation of multimedia streams in internet applications. In: Proceedings of the 8th international conference on information systems and technologies, ICIST 18, New York, NY, USA, Association for Computing Machinery

  10. Giannoulis S, Antonopoulos C, Topalis E, Athanasopoulos A, Prayati A, Koubias S (2009) TCP vs. UDP performance evaluation for CBR traffic on wireless multihop networks. Simulation 14:43

    Google Scholar 

  11. Behrouz AF, Sophia CF (2002) TCP/IP protocol suite. McGraw-Hill Higher Education, New York

    Google Scholar 

  12. Nor SA, Alubady R, Kamil WA (2017) Simulated performance of tcp, sctp, dccp and udp protocols over 4g network. Proc Comput Sci 111:2–7

    Article  Google Scholar 

  13. Braud T, Heusse M, Duda A (2014) Tcp over large buffers: when adding traffic improves latency. In: Teletraffic congress (ITC), 2014 26th international, pp 1–8. IEEE

  14. Issariyakul T, Hossain E (2009) Introduction to network simulator 2 (ns2). In: Introduction to network simulator NS2, pp 1–18. Springer

  15. Hasegawa G, Murata M (2001) Survey on fairness issues in tcp congestion control mechanisms. IEICE Trans Commun 84(6):1461–1472

    Google Scholar 

  16. Gettys J, Nichols K (2011) Bufferbloat: dark buffers in the internet. Queue 9(11):40

    Article  Google Scholar 

  17. Neal C, Yuchung C, Stephen GC, Hassas YS, Van J (2017) BBR: congestion-based congestion control. Commun ACM 60(2):58–66

    Article  Google Scholar 

  18. Hock M, Bless R, Zitterbart M (2017) Experimental evaluation of BBR congestion control. In: 2017 IEEE 25th international conference on network protocols (ICNP), pp 1–10. IEEE

  19. Allman M, Paxson V, Stevens W et al (1999) TCP congestion control

  20. Zhang X, Schulzrinne H (2004) Voice over TCP and UDP. Department of Computer Science, Columbia University, Tech. Rep. CUCS-033-04

  21. Andrew L, Marcondes C, Floyd S, Dunn L, Guillier R, Gang W, Eggert L, Ha S, Rhee I (2008) Towards a common tcp evaluation suite. In: Proc, PFLDnet

  22. Kiruthiga B, George E, Raj DP (2014) Survey on aqm congestion control algorithms. Int J Comput Sci Mob Appl 2(2):38–44

    Google Scholar 

  23. Dukkipati N, Cheng Y, Vahdat A (2016) Research impacting the practice of congestion control

  24. Katiyar V, Jain AC (2014) A survey on red and some it’s varients incongestioncontrol mechanism. Int J Eng Manag Res 4(4):184–188

    Google Scholar 

  25. Nichols K, Jacobson V, McGregor A, Iyengar J (2013) Controlled delay active queue management. In: Work in progress

  26. Nichols K, Jacobson V, McGregor A, Iyengar J (2015) Controlled delay active queue management: draft-ietf-aqm-codel-03. In: IETF, December

  27. Pan R, Natarajan P, Piglione C, Prabhu MS, Subramanian V, Baker F, VerSteeg B (2013) PIE: a lightweight control scheme to address the bufferbloat problem. In 2013 IEEE 14th international conference on high performance switching and routing (HPSR), pp 148–155. IEEE

  28. Jacobson V (1988) Congestion avoidance and control. In: ACM SIGCOMM computer communication review, vol 18, pp 314–329. ACM

  29. Song KTJ, Zhang Q, Sridharan M (2006) Compound TCP: a scalable and TCP-friendly congestion control for high-speed networks. In: Proceedings of PFLDnet 2006

  30. Ha S, Rhee I, Lisong X (2008) CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper Syst Rev 42(5):64–74

    Article  Google Scholar 

  31. Brakmo LS, Peterson LL (1995) TCP vegas: end to end congestion avoidance on a global internet. IEEE J Sel Areas Commun 13(8):1465–1480

    Article  Google Scholar 

  32. Cheng Y, Cardwell N (2016) Making linux TCP fast. In: Netdev conference

  33. Abed JB, Sinda L, Mani MA, Mbarek R (2012) Comparison of high speed congestion control protocols. Int J Netw Secur Appl 4(5):15

    Google Scholar 

  34. Cardwell N, Cheng Y, Gunn CS, Yeganeh SH, Jacobson V (2017) BBR congestion control: an update. In: Presentation in ICCRG at IETF 98th meeting

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najmuddin, S., Asim, M., Munir, K. et al. A BBR-based congestion control for delay-sensitive real-time applications. Computing 102, 2541–2563 (2020). https://doi.org/10.1007/s00607-020-00829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-020-00829-2

Keywords

Mathematics Subject Classification

Navigation