Skip to main content

Advertisement

Log in

Selective dorsal rhizotomy: functional anatomy of the conus-cauda and essentials of intraoperative neurophysiology

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Spasticity is the result of an exaggeration of the monosynaptic muscle stretch reflex due to lesions affecting the central nervous system, in particular an upper motor neuron lesion. Selective dorsal rhizotomy (SDR) is a surgical technique developed to treat spastic diplegia, one of the common forms of cerebral palsy, resulting from the lack of supraspinal inhibitory controls. The aim of SDR is to identify and cut a critical amount of the sensory rootlets, in particular those contributing the most to spasticity, in order to relieve the patient from lower limb spasticity while preserving motor strength and sphincter control. Various surgical techniques to perform SDR have been proposed over time. Similarly, intraoperative neurophysiology (ION)—first introduced by Fasano and colleagues in 1976—is a safe and effective tool to guide the surgeon in the procedure of SDR, but different ION strategies are used by different authors, and the value of ION itself has been questioned.

Methods

The purpose of this paper is to review the anatomo-physiological background of SDR, the historical development of the surgical technique, and the essential principles of ION.

Results

While some surgeons privilege a single-level approach and others a multi-level approach, nowadays, there are still neither agreement nor guidelines on the percentage of roots to be cut. Rather, a tailored approach based on both the preoperative functional status as well as intraoperative ION findings seems reasonable. ION is considered not essential to decide the percentage of roots to cut, but it assists to distinguish between ventral and dorsal roots, and to preserve sphincterial function, whenever S2 rootlets are included in SDR.

Conclusions

To optimize the balance between reduction of spasticity and preservation of motor strength while minimizing the neurological damage remains the main goal of SDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott R (2007) Editorial on ‘The management of childhood hypertonia’. Childs Nerv Syst 23(9):937–941

    PubMed  Google Scholar 

  2. Abbott R (1996) Sensory rhizotomy for the treatment of childhood spasticity. J Child Neurol 11(Suppl. 1):36–42

    Google Scholar 

  3. Aquilina K, Graham D, Wimalasundera N (2015) Selective dorsal rhizotomy: an old treatment re-emerging. Arch Dis Child 100(8):798–802

    PubMed  Google Scholar 

  4. Bax M, Goldstein M, Rosenbaum P, Levinton A, Paneth N (2005) Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 47(April):571–576

    Google Scholar 

  5. Cohen AR, Webster HC (1991) How selective is selective posterior rhizotomy? Surg Neurol 35(4):267–272

    CAS  PubMed  Google Scholar 

  6. Enslin JMN, Langerak NG, Fieggen AG (2019) The evolution of selective dorsal rhizotomy for the management of spasticity. Neurotherapeutics 16(1):3–8

    PubMed  Google Scholar 

  7. Fasano VA, Barolat-Romana G, Ivaldi A, Sguazzi A (1976) La radicotomie postérieure fonctionnelle dans le traitement de la spasticité cérébrale Premieres observations sur la stimulation électrique peropératoire des racines postérieures, et leur utilisation dans le choix des racines à sectionner. Neurochirurgie 22(1):23–24

    CAS  PubMed  Google Scholar 

  8. Filloux FM (1996) Neuropathophysiology of movement disorders in cerebral palsy. J Child Neurol 11(Suppl. 1):S5–S12

    PubMed  Google Scholar 

  9. Foerster O (1913) On the indication and results of the excision of posterior roots in men. Surg Gynecol Obstet 16:463–475

    Google Scholar 

  10. Freud S (1897) Die infantile Cerebrallähmung. In: Specielle Pathologie und Therapie Bd IX, Teil III, Holder ed (Wien), pp. 1–327

  11. Fukuhara T, Nakatsu D, Namba Y, Yamadori I (2011) Histological evidence of intraoperative monitoring efficacy in selective dorsal rhizotomy. Childs Nerv Syst 27(9):1453–1458

    PubMed  Google Scholar 

  12. Georgoulis G, Brînzeu A, Sindou M (2018) Dorsal rhizotomy for children with spastic diplegia of cerebral palsy origin: usefulness of intraoperative monitoring. J Neurosurg Pediatr 22(1):89–101

    PubMed  Google Scholar 

  13. Graham D, Aquilina K, Cawker S, Paget S, Wimalasundera N (2016) Single-level selective dorsal rhizotomy for spastic cerebral palsy. J Spine Surg 2(3):195–201

    PubMed  PubMed Central  Google Scholar 

  14. Graham D, Aquilina K, Mankad K, Wimalasundera N (2018) Selective dorsal rhizotomy: current state of practice and the role of imaging. Quant Imaging Med Surg 8(2):209–218

    PubMed  PubMed Central  Google Scholar 

  15. Gros C, Ouaknine G, Vlahovitch B, Frerebeau P (1967) La radicotomie sélective postérieure dans le traitement neuro-chirurgical de l’hypertonie pyramidale. Neurochirurgie 13:505–518

    CAS  PubMed  Google Scholar 

  16. Hultborn H (2006) Spinal reflexes, mechanisms and concepts : from Eccles to Lundberg and beyond. Prog Neurobiol 78:215–232

    PubMed  Google Scholar 

  17. Kothbauer KF, Deletis V (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26(2):247–253

    PubMed  Google Scholar 

  18. Lang FF, Deletis V, Cohen HW, Velasquez L, Abbott R (1994) Inclusion of the S2 dorsal rootlets in functional posterior rhizotomy for spasticity in children with cerebral palsy. Neurosurgery 34(5):847–853

    CAS  PubMed  Google Scholar 

  19. Langerak NG, Lamberts RP, Fieggen AG, Peter JC, Peacock WJ, Vaughan CL (2007) Selective dorsal rhizotomy: long-term experience from Cape Town. Childs Nerv Syst 23(9):1003–1006

    PubMed  Google Scholar 

  20. Lazareff JA, Garcia-Mendez MA, De Rosa R, Olmstead C (1999) Limited (L4-S1, L5-S1) selective dorsal rhizotomy for reducing spasticity in cerebral palsy. Acta Neurochir 141(7):743–752

    CAS  PubMed  Google Scholar 

  21. Little WJ (1966) On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. Clin Orthop Relat Res 46:7–22

    PubMed  Google Scholar 

  22. Logigian EL (1994) H reflex studies in cerebral palsy patient undergoing partial dorsal rhizotomy. Muscle Nerve 17(5):539–549

    CAS  PubMed  Google Scholar 

  23. MacKinnon CD (2018) Sensorimotor anatomy of gait, balance, and falls. Handb Clin Neurol 159:3–26

    PubMed  PubMed Central  Google Scholar 

  24. MacLennan AH, Thompson SC, Gecz J (2015) Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 213(6):779–788

    PubMed  Google Scholar 

  25. McLaughlin J, Bjornson K, Temkin N, Steinbok P, Wright V, Reiner A, Roberts T, Drake J, O'Donnell M, Rosenbaum P, Barber J, Ferrel A (2002) Selective dorsal rhizotomy: meta-analysis of three randomized controlled trials. Dev Med Child Neurol 44(3):17–25

    PubMed  Google Scholar 

  26. Mittal S, Farmer JP, Poulin C, Silver K (2001) Reliability of intraoperative electrophysiological monitoring in selective posterior rhizotomy. J Neurosurg 95(1):67–75

    CAS  PubMed  Google Scholar 

  27. Moreno De Luca A, Ledbetter DH, Martin CL (2012) Genetic insights into the causes and classification of the cerebral palsies. Lancet Neurol 11:283–292

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morota N (2019) Clinically practical formula for preoperatively estimating the cutting rate of the spinal nerve root in a functional posterior rhizotomy. Childs Nerv Syst 35(4):665–672

    PubMed  Google Scholar 

  29. Morota N (2007) Functional posterior rhizotomy: the Tokyo experience. Childs Nerv Syst 23(9):1007–1014

    PubMed  Google Scholar 

  30. Netter F (2014) Atlas of human anatomy. 6th ed, Edra

  31. Osler SW (1889) The cerebral palsies of children: a clinical study for the infirmary for nervous diseases, classics of neurology and neurosurgery Library, Philadelphia

  32. Panteliadis CP (2018) Cerebral palsy - a multidisciplinary approach, 3rd edn. Springer International Publishing, pp 35–47

  33. Papadelis C, Kaye H, Shore B, Snyder B, Grant PE, Rotenberg A (2019) Maturation of corticospinal tracts in children with hemiplegic cerebral palsy assessed by diffusion tensor imaging and transcranial magnetic stimulation. Front Hum Neurosci 13(July):1–9

    Google Scholar 

  34. Park TS, Dobbs MB, Cho J (2018) Evidence supporting selective dorsal rhizotomy for treatment of spastic cerebral palsy. Cureus 10(10):e3466

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Park TS, Johnston JM (2006) Surgical techniques of selective dorsal rhizotomy for spastic cerebral palsy.Technical note. Neurosurg Focus 21(2):1–6

    Google Scholar 

  36. Peacock WJ, Aren LJ, Berman B (1987) Cerebral palsy spasticity. Selective posterior rhizotomy. Pediatr Neurosci 13:61–66

    CAS  PubMed  Google Scholar 

  37. Sherrington CS (1898) Decerebrate rigidity and reflex coordination of movements. J Physiol 22:319–327

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sindou M, Georgoulis G, Mertens P (2014) Neurosurgery for spasticity- a practical guide for treating children and adults, 1st edn. Springer-Verlag, Wien

    Google Scholar 

  39. Sindou M (1995) Microsurgical DREZotomy (MDT) for pain, spasticity, and hyperactive bladder: a 20-year experience. Acta Neurochir 137:1–5

    CAS  PubMed  Google Scholar 

  40. Sindou M (2019) Surgery in the dorsal root entry zone for spasticity. In: Lozano AM, Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional neurosurgery. Springer, Berlin, pp 1–26

    Google Scholar 

  41. Smyth MD, Peacock WJ (2000) The surgical treatment of spasticity. Muscle Nerve 23:153–163

    CAS  PubMed  Google Scholar 

  42. Steinbok P, Gustavsson B, Kestle JRW, Reiner A, Cochrane DD (1995) Relationship of intraoperative electrophysiological criteria to outcome after selective functional posterior rhizotomy. J Neurosurg 83(1):18–26

    CAS  PubMed  Google Scholar 

  43. Steinbok P, Keyes R, Langill L, Cochrane DD (1994) The validity of electrophysiological criteria used in selective functional posterior rhizotomy for treatment of spastic cerebral palsy. J Neurosurg 81(3):354–361

    CAS  PubMed  Google Scholar 

  44. Steinbok P, Langill L, Cochrane DD, Keyes R (1992) Observations on electrical stimulation of lumbosacral nerve roots in children with and without lower limb spasticity. Childs Nerv Syst 8:376–382

    CAS  PubMed  Google Scholar 

  45. Steinbok P, Reiner A, Beauchamp RD, Cochrane DD, Keyes R (1992) Selective functional posterior rhizotomy for treatment of spastic cerebral palsy in children. Pediatr Neurosurg 18(1):34–42

    CAS  PubMed  Google Scholar 

  46. Steinbok P, Tidemann AJ, Miller S, Mortenson P, Bowen-Roberts T (2009) Electrophysiologically guided versus non-electrophysiologically guided selective dorsal rhizotomy for spastic cerebral palsy: a comparison of outcomes. Childs Nerv Syst 25(9):1091–1096

    PubMed  Google Scholar 

  47. Steinbok P (2007) Selective dorsal rhizotomy for spastic cerebral palsy: a review. Childs Nerv Syst 23(9):981–990

    PubMed  Google Scholar 

  48. Storrs BB, Nishida T (1988) Use of ‘H’ reflex recovery curve in selective posterior rhizothomy. Pediatr Neurosci 14:120–123

    CAS  PubMed  Google Scholar 

  49. Trompetto C, Marinelli L, Mori L, Pelosin E, Currà A, Molfetta L, Abbruzzese G (2014) Pathophysiology of spasticity: implications for neurorehabilitation. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/354906

    Article  Google Scholar 

  50. Turner RP (2009) Neurophysiologic intraoperative monitoring during selective dorsal rhizotomy. J Clin Neurophysiol 26(2):82–84

    PubMed  Google Scholar 

  51. Wang KK, Munger ME, Chen BP, Novacheck TF (2018) Selective dorsal rhizotomy in ambulant children with cerebral palsy. J Child Orthop 12(5):413–427

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao B, Constatntini S, Browd SR, Zhan Q, Jiang W, Mei R (2019) The role of intra-operative neuroelectrophysiological monitoring in single-level approach selective dorsal rhizotomy. Childs Nerv Syst:1–9. https://doi.org/10.1007/s00381-019-04408-5

  53. Zhou M, Wang W, Huang H, Zhu G, Chen Y, Zhou C (2010) Microsurgical anatomy of lumbosacral nerve rootlets for highly selective rhizotomy in chronic spinal cord injury. Anat Rec 293:2123–2128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquali, C., Deletis, V. & Sala, F. Selective dorsal rhizotomy: functional anatomy of the conus-cauda and essentials of intraoperative neurophysiology. Childs Nerv Syst 36, 1907–1918 (2020). https://doi.org/10.1007/s00381-020-04746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04746-9

Keywords

Navigation