Skip to main content
Log in

Swelling and dissolution kinetics of natural and man-made cellulose fibers in solvent power tuned ionic liquid

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The kinetics of the dissolution and swelling of different cellulose fibers in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) was studied by varying solvent power and temperature. Natural fiber, flax, and man-made fibers, Cordenka and Lyocell-type (Ioncell) were used with one Ioncell fiber containing lignin and hemicelluloses. Through the addition of water, the solvent power was modified from very good (neat ionic liquid), to moderate (with 5 wt% water) and weak (15 wt% water). The temperature was varied to correlate the fiber dissolution rate with the solvent viscosity. All fibers were characterized by chemical composition, crystallinity, molecular weight distribution and dynamic vapor sorption. It was demonstrated that while the rate of fiber dissolution in neat ionic liquid depends on fiber accessibility and solvent viscosity, the water-induced decreased solvent power dominates the general fiber behavior. Flax appeared to be the most “sensitive” to the solvent power due to its hierarchical structure. The fastest dissolution or swelling was recorded for Ioncell and the slowest for Cordenka.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL®(Lyocell) and other man‐made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091

    Article  CAS  Google Scholar 

  • Andanson JM, Bordes E, Devémy J, Leroux F, Pádua AA, Gomes MF (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538

    Article  CAS  Google Scholar 

  • Asaadi S, Hummel M, Ahvenainen P, Gubitosi M, Olsson U, Sixta H (2018) Structural analysis of Ioncell-F fibres from birch wood. Carbohydr Polym 181:893–901

    Article  CAS  PubMed  Google Scholar 

  • Baley C (2000) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33:939–948

    Article  Google Scholar 

  • Bolton AJ (1994) Natural fibers for plastic reinforcement. Mater Technol 9:12–20

    Article  Google Scholar 

  • Brückner S (2000) Estimation of the background in powder diffraction patterns through a robust smoothing procedure. J Appl Crystallogr 33:977–979

    Article  Google Scholar 

  • Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–5

    Article  CAS  Google Scholar 

  • Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121

    Article  CAS  Google Scholar 

  • Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61

    Article  CAS  Google Scholar 

  • Chaudemanche C, Navard P (2011) Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose 18:1–5

    Article  CAS  Google Scholar 

  • Chen F, Kan Z, Hua S, Liu Z, Yang M (2015) A new understanding concerning the influence of structural changes on the thermal behavior of cellulose. J Polym Res 22:225

    Article  CAS  Google Scholar 

  • Chen F, Sawada D, Hummel M, Sixta H, Budtova T (2020) Unidirectional all-cellulose composites from flax via controlled impregnation with ionic liquid. Polymers 12:1010

    Article  CAS  PubMed Central  Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibres in N-methylmorpholine‐N‐oxide–water mixtures. Macromol Symp 244:1–18

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, part III: plant fibres in aqueous systems. Cellulose 15:67–74

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Frost K, Kaminski D, Kirwan G et al (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548

    Article  CAS  Google Scholar 

  • Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 12:3295–3297

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    Article  CAS  PubMed  Google Scholar 

  • Gross AS, Chu JW (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341

    Article  CAS  PubMed  Google Scholar 

  • Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA, Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818

    Article  CAS  PubMed  Google Scholar 

  • Hauru LK, Hummel M, King AW, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905

    Article  CAS  PubMed  Google Scholar 

  • Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Janson J (1970) Calculation of the polysaccharide composition of wood and pulp. Pap Puu Pap Tim 52:323–329

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  PubMed  Google Scholar 

  • Korhonen O, Sawada D, Budtova T (2019) All-cellulose composites via short-fiber dispersion approach using NaOH–water solvent. Cellulose 26:4881–4893

    Article  CAS  Google Scholar 

  • Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684

    Article  CAS  Google Scholar 

  • Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54

    Article  CAS  Google Scholar 

  • Le Moigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibres. Macromol Symp 262:65–71

    Article  CAS  Google Scholar 

  • Le Moigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332

    Article  CAS  Google Scholar 

  • Le Moigne N, Spinu M, Heinze T, Navard P (2010) Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polymer 51:447–453

    Article  CAS  Google Scholar 

  • Ma Y, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose–lignin blends regenerated from ionic liquid solution. ChemSusChem 8:4030–4039

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Stubb J, Kontro I, Nieminen K, Hummel M, Sixta H (2018) Filament spinning of unbleached birch kraft pulps: effect of pulping intensity on the processability and the fiber properties. Carbohydr Polym 179:145–151

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä V, Wahlström R, Holopainen-Mantila U, Kilpeläinen I, King AW (2018) Clustered single cellulosic fiber dissolution kinetics and mechanisms through optical microscopy under limited dissolving conditions. Biomacromolecules 19:1635–1645

    Article  PubMed  CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  • Minnick DL, Flores RA, DeStefano MR, Scurto AM (2016) Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects. J Phys Chem B 120:7906–7919

    Article  CAS  PubMed  Google Scholar 

  • Moryganov AP, Zavadskii AE, Stokozenko VG (2018) Special features of X-ray analysis of cellulose crystallinity and content in flax fibres. Fibre Chem 49:382–387

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58(3):293–299

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2005) Water accessibilities of man-made cellulosic fibers–effects of fiber characteristics. Cellulose 12:403–410

    Article  CAS  Google Scholar 

  • Olsson C, Idström A, Nordstierna L, Westman G (2014) Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 99:438–446

    Article  CAS  PubMed  Google Scholar 

  • Parviainen H, Parviainen A, Virtanen T, Kilpeläinen I, Ahvenainen P, Serimaa R, Grönqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Dai G, Wang S, Xu H (2017) The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J Mol Liq 241:959–966

    Article  CAS  Google Scholar 

  • Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part A Appl Sci Manuf 43:275–87

    Article  CAS  Google Scholar 

  • Powell RE, Roseveare WE, Eyring H (1941) Diffusion, thermal conductivity, and viscous flow of liquids. Ind Eng Chem 33:430–435

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  • Rous MA, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13:411–419

    Article  CAS  Google Scholar 

  • Rous MA, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL®(Lyocell) and other man-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Shi Z, Yang Q, Cai J, Kuga S, Matsumoto Y (2014) Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution. Cellulose 21:1205–1215

    Article  CAS  Google Scholar 

  • Siroka B, Noisternig M, Griesser UJ, Bechtold T (2008) Characterization of cellulosic fibers and fabrics by sorption/desorption. Carbohydr Res 343:2194–2199

    Article  CAS  PubMed  Google Scholar 

  • Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Paper Res J 30:43–57

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Nishino T, Peijs T (2009) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A Appl Sci Manuf 40:321–328

    Article  CAS  Google Scholar 

  • Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert WJ (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. Polym Sci Part A Polym Chem 36:1945–1955

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Takashi N, Ikuyo M, Koichi H (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Xie Y, Hill CA, Jalaludin Z, Curling SF, Anandjiwala RD, Norton AJ, Newman G (2011) The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46(2):479–489

    Article  CAS  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Business Finland (Grant No. 211599), Stora Enso Oyj and UPM-Kymmene Oyj is gratefully acknowledged. Authors wish to thank Separation Research Oy Ab and Fibertus Oy for collaboration. We thank Gabriel Monge (CEMEF, MINES ParisTech) and Leena Pitänen (Aalto University) for XRD and GPC measurement, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Budtova.

Additional information

Pulisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary file 1 (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Sawada, D., Hummel, M. et al. Swelling and dissolution kinetics of natural and man-made cellulose fibers in solvent power tuned ionic liquid. Cellulose 27, 7399–7415 (2020). https://doi.org/10.1007/s10570-020-03312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03312-5

Keywords

Navigation