Skip to main content
Log in

Effect of Pulse and Direct Current Electrodeposition on Microstructure, Surface, and Scratch Resistance Properties of Ni–W Alloy and Ni–W–SiC Composite Coatings

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The present work aims to study the influence of direct current and pulse current techniques as well as embedded SiC nanoparticles on the mechanical properties of the electrodeposited Ni–W coating. The electrodeposited coatings were studied for morphological, microstructural, mechanical, and scratch resistance properties using the surface roughness tester, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers microhardness, and scratch tester. Application of pulse current exhibited relatively homogeneous and smooth surface of the coatings. A remarkable increment of microhardness was observed in both Ni–W and Ni–W–SiC coatings prepared under pulse current as compared to the direct current technique. Similarly, the scratch test revealed a considerable improvement in the scratch resistance behavior of the Ni–W alloy and the composite coatings from the pulsed current condition. Hence, the application of pulse current not only improved the surface- and microstructure-related properties but also enhanced the Vickers microhardness and scratch resistance properties of the coatings. In addition, the reduction in micro-cracks revealed the improvement in scratch resistance properties of the coatings due to the incorporated SiC nanoparticles into the Ni–W alloy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.G. Fink, P.J.D. Prince, Trans. Am. Electrochem. Soc. 54, 315 (1928)

    Google Scholar 

  2. G. Gyawali, B. Joshi, K. Tripathi, S.W. Lee, J. Mater. Eng. Perform. 26, 4462 (2017)

    Article  CAS  Google Scholar 

  3. E. Beltowska-lehman, P. Indyka, A. Bigos, M.J. Szczerba, M. Kot, Mater. Des. 80, 1 (2015)

    Article  CAS  Google Scholar 

  4. A. Genc, M. Lutfi Ovecoglu, M. Baydogan, S. Turan, Mater. Des. 42, 495 (2012)

    Article  CAS  Google Scholar 

  5. P. Indyka, E. Beltowska-lehman, L. Tarkowski, A. Bigos, E. García-lecina, J. Alloys Compd. 590, 75 (2014)

    Article  CAS  Google Scholar 

  6. N.P. Wasekar, S.M. Latha, M. Ramakrishna, D.S. Rao, G. Sundararajan, Mater. Des. 112, 140 (2016)

    Article  CAS  Google Scholar 

  7. B. Li, W. Zhang, W. Zhang, Y. Huan, J. Alloys Compd. 702, 38 (2017)

    Article  CAS  Google Scholar 

  8. Y. Yao, S. Yao, L. Zhang, H. Wang, Mater. Lett. 61, 67 (2007)

    Article  CAS  Google Scholar 

  9. L. Tian, J. Xu, C. Qiang, Appl. Surf. Sci. 257, 4689 (2011)

    Article  CAS  Google Scholar 

  10. N. Spyrellis, E.A. Pavlatou, S. Spanou, A. Zoikis-karathanasis, Trans. Nonferrous Met. Soc. China 19, 800 (2009)

    Article  CAS  Google Scholar 

  11. A.F. Zimmerman, D.G. Clark, K.T. Aust, U. Erb, Mater. Lett. 52, 85 (2002)

    Article  CAS  Google Scholar 

  12. P. Nowak, R.P. Socha, M. Kaisheva, J. Fransaer, J.P. Celis, Z. Stoinov, J. Appl. Electrochem. 30, 429 (2000)

    Article  CAS  Google Scholar 

  13. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Rezvanian, V. Torabinejad, A.R. Sabour Rouhaghdam, Surf. Coat. Technol. 307, 978 (2016)

    Article  CAS  Google Scholar 

  14. K.A. Kumar, G.P. Kalaignan, V.S. Muralidharan, Ceram. Int. 39, 2827 (2013)

    Article  Google Scholar 

  15. O.S.A. Rahman, N.P. Wasekar, G. Sundararajan, A.K. Keshri, Mater. Charact. 116, 1 (2016)

    Article  CAS  Google Scholar 

  16. G. Gyawali, B. Joshi, K. Tripathi, S.W. Lee, Ceram. Int. 42, 3497 (2016)

    Article  CAS  Google Scholar 

  17. G. Gyawali, S.H. Cho, D.J. Woo, S.W. Lee, Trans. Inst. Met. Finish. 90, 274 (2012)

    Article  CAS  Google Scholar 

  18. G. Gyawali, K. Tripathi, B. Joshi, S.W. Lee, J. Alloys Compd. 721, 757 (2017)

    Article  CAS  Google Scholar 

  19. M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, F.J. Williams, Surf. Coat. Technol. 204, 85 (2009)

    Article  CAS  Google Scholar 

  20. M.V.N. Vamsi, N.P. Wasekar, G. Sundararajan, Surf. Coat. Technol. 319, 403 (2017)

    Article  CAS  Google Scholar 

  21. J.H. Liu, Z.L. Pei, W.B. Shi, Y.D. Liu, J. Gong, C. Sun, Surf. Coat. Technol. 385, 125451 (2020)

    Article  CAS  Google Scholar 

  22. V.D. Papachristos, C.N. Panagopoulos, L.W. Christoffersen, A. Markaki, Thin Solid Films 396, 174 (2001)

    Article  Google Scholar 

  23. F.C. Chang, M. Levy, R. Huie, M. Kane, P. Buckley, T.Z. Kattamis, G.R. Lakshminarayan, Surf. Coat. Technol. 49, 87 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the PhD full funding scholarship from the National Institute for International Education (NIIED), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gobinda Gyawali or Soo Wohn Lee.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin Humam, S., Gyawali, G., Dhakal, D.R. et al. Effect of Pulse and Direct Current Electrodeposition on Microstructure, Surface, and Scratch Resistance Properties of Ni–W Alloy and Ni–W–SiC Composite Coatings. Acta Metall. Sin. (Engl. Lett.) 33, 1321–1330 (2020). https://doi.org/10.1007/s40195-020-01098-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01098-w

Keywords

Navigation