Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase-locked laser-wakefield electron acceleration

Abstract

Subluminal and superluminal light pulses have attracted considerable attention in recent decades1,2,3,4, opening perspectives in telecommunications, optical storage and fundamental physics5. Usually achieved in matter, superluminal propagation has also been demonstrated in vacuum with quasi-Bessel beams6,7 or spatio-temporal couplings8,9. Although, in the first case, the propagation was diffraction free, but with hardly controllable pulse velocities and limited to moderate intensities, in the second, high tunability was achieved, but with substantially lengthened pulse durations. Here we report a new concept that extends these approaches to relativistic intensities and ultrashort pulses by mixing spatio-temporal couplings and quasi-Bessel beams to independently control the light velocity and intensity. When used to drive a laser-plasma accelerator10, this concept leads to a new regime that is dephasing free, where the electron beam energy gain increases by more than one order of magnitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic view of laser-plasma acceleration with an axiparabola, without and with STCs.
Fig. 2: Comparison, for a constant-intensity focal line, of the maximum peak intensity and velocity evolution with and without STCs, stemming from linear spectral propagation simulations in vacuum.
Fig. 3: Evolution of energy gain with accelerator, laser and plasma parameters.
Fig. 4: PIC simulations of phase-locked acceleration and standard LPA, with an externally injected electron bunch and the same laser energy.

Similar content being viewed by others

Data availability

The data that support the plots and findings of this paper are available from the corresponding author upon reasonable request.

References

  1. Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000).

    Article  ADS  Google Scholar 

  2. Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–203 (2003).

    Article  ADS  Google Scholar 

  3. Stenner, M. D., Gauthier, D. J. & Neifeld, M. A. The speed of information in a ‘fast-light’ optical medium. Nature 425, 695–698 (2003).

    Article  ADS  Google Scholar 

  4. Thévenaz, L. Slow and fast light in optical fibres. Nat. Photon. 2, 474–481 (2008).

    Article  ADS  Google Scholar 

  5. Boyd, R. Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908–1915 (2009).

    Article  ADS  Google Scholar 

  6. Alexeev, I., Kim, K. Y. & Milchberg, H. M. Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse. Phys. Rev. Lett. 88, 073901 (2002).

    Article  ADS  Google Scholar 

  7. Mugnai, D., Ranfagni, A. & Ruggeri, R. Observation of superluminal behaviors in wave propagation. Phys. Rev. Lett. 84, 4830–4833 (2000).

    Article  ADS  Google Scholar 

  8. Sainte-Marie, A., Gobert, O. & Quéré, F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4, 1298–1304 (2017).

    Article  ADS  Google Scholar 

  9. Froula, D. H. et al. Spatiotemporal control of laser intensity. Nat. Photon. 12, 262–265 (2018).

    Article  ADS  Google Scholar 

  10. Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301 (2007).

    Article  ADS  Google Scholar 

  11. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  12. Malka, V. et al. Principles and applications of compact laser plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  13. Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. & Leemans, W. P. Physics considerations for laser-plasma linear colliders. Phys. Rev. ST Accel. Beams 13, 101301 (2010).

    Article  ADS  Google Scholar 

  14. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  15. Steinke, S. et al. Multistage coupling of independent laser-plasma accelerators. Nature 530, 190–193 (2016).

    Article  ADS  Google Scholar 

  16. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696–699 (2006).

    Article  Google Scholar 

  17. Guillaume, E. et al. Electron rephasing in a laser-wakefield accelerator. Phys. Rev. Lett. 115, 155002 (2015).

    Article  ADS  Google Scholar 

  18. Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    Article  ADS  Google Scholar 

  19. Smartsev, S. et al. Axiparabola: a long-focal-depth, high-resolution mirror for broadband high-intensity lasers. Opt. Lett. 44, 3414–3417 (2019).

    Article  ADS  Google Scholar 

  20. Davidson, N., Friesem, A. A. & Hasman, E. Holographic axilens: high resolution and long focal depth. Opt. Lett. 16, 523–525 (1991).

    Article  ADS  Google Scholar 

  21. Hafizi, B., Esarey, E. & Sprangle, P. Laser-driven acceleration with Bessel beams. Phys. Rev. E 55, 3539–3545 (1997).

    Article  ADS  Google Scholar 

  22. Kumar, S., Parola, A., Di Trapani, P. & Jedrkiewicz, O. Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses. Appl. Phys. B 123, 185 (2017).

    Article  ADS  Google Scholar 

  23. Sun, B., Salter, P. S. & Booth, M. J. Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Opt. Express 23, 19348–19357 (2015).

    Article  ADS  Google Scholar 

  24. Cui, Z. et al. Dynamic chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems. Opt. Express 27, 16812–16822 (2019).

    Article  ADS  Google Scholar 

  25. Guizar-Sicairos, M. & Gutiérrez-Vega, J. C. Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. J. Opt. Soc. Am. A 21, 53–58 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  26. Schmid, K. et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. ST Accel. Beams 13, 091301 (2010).

    Article  ADS  Google Scholar 

  27. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  28. Budriūnas, R. et al. 53-W average power CEP-stabilized OPCPA system delivering 5.5-TW few cycle pulses at 1-kHz repetition rate. Opt. Express 25, 5797–5806 (2017).

    Article  ADS  Google Scholar 

  29. Rivas, D. E. et al. Next generation driver for attosecond and laser-plasma physics. Sci. Rep. 7, 5224 (2017).

    Article  ADS  Google Scholar 

  30. Cartlidge, E. The light fantastic. Science 359, 382–385 (2018).

    Article  ADS  Google Scholar 

  31. Vieira, J. & Mendonça, J. T. Nonlinear laser driven donut wakefields for positron and electron acceleration. Phys. Rev. Lett. 112, 215001 (2014).

    Article  ADS  Google Scholar 

  32. Depresseux, A. et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photon. 9, 817–821 (2015).

    Article  ADS  Google Scholar 

  33. Phuoc, K. T. et al. All-optical Compton gamma-ray source. Nat. Photon. 6, 308–311 (2012).

    Article  ADS  Google Scholar 

  34. Corde, S. et al. Femtosecond X-rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013).

    Article  ADS  Google Scholar 

  35. Nie, Z. et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nat. Photon. 12, 489–494 (2018).

    Article  ADS  Google Scholar 

  36. Averchi, A. et al. Phase matching with pulsed Bessel beams for high-order harmonic generation. Phys. Rev. A 77, 021802 (2008).

    Article  ADS  Google Scholar 

  37. Lifschitz, A. et al. Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys. 228, 1803–1814 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the European Research Council through the project XFive (grant no. 339128), the French Agence Nationale de la Recherche (ANR) under reference ANR-19-TERC-0001-01 (project TGV), Gerry Schwartz and Heather Reisman, Israel Science Foundation, VATAT support and the French embassy in Israel through a Chateaubriand fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and C.T. jointly proposed the concept of phase-locked acceleration, using axiparabola and spatio-temporal couplings. The idea was then developed by C.C. with advice from V.M. and C.T. C.C. and C.T. established the theoretical background, while C.C. and S.S. developed codes for optimizing and simulating axiparabola focus. Simulations were carried out by C.C. Finally, C.C. and C.T. wrote the manuscript with help from V.M. and S.S.

Corresponding author

Correspondence to C. Caizergues.

Ethics declarations

Competing interests

C.T. and S.S. have filed a patent application (no. EP18305810.6) on axiparabola. The authors declare no other competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caizergues, C., Smartsev, S., Malka, V. et al. Phase-locked laser-wakefield electron acceleration. Nat. Photonics 14, 475–479 (2020). https://doi.org/10.1038/s41566-020-0657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0657-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing