Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric interactions in the parathyroid hormone GPCR–arrestin complex formation

Abstract

Peptide ligands of class B G-protein-coupled receptors act via a two-step binding process, but the essential mechanisms that link their extracellular binding to intracellular receptor–arrestin interactions are not fully understood. Using NMR, crosslinking coupled to mass spectrometry, signaling experiments and computational approaches on the parathyroid hormone (PTH) type 1 receptor (PTHR), we show that initial binding of the PTH C-terminal part constrains the conformation of the flexible PTH N-terminal signaling epitope before a second binding event occurs. A ‘hot-spot’ PTH residue, His9, that inserts into the PTHR transmembrane domain at this second step allosterically engages receptor–arrestin coupling. A conformational change in PTHR intracellular loop 3 permits favorable interactions with β-arrestin’s finger loop. These results unveil structural determinants for PTHR–arrestin complex formation and reveal that the two-step binding mechanism proceeds via cooperative fluctuations between ligand and receptor, which extend to other class B G-protein-coupled receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NMR analysis uncovers molecular aspects of the PTH–PTHR binding mechanism.
Fig. 2: Expanded two-step binding mechanism.
Fig. 3: PTHH9A dramatically alters PTHR signaling.
Fig. 4: PTHH9A stabilizes a unique receptor conformation.
Fig. 5: Identification of key contacts in the PTHR–β-arrestin complex interface by photo-crosslinking coupled to MS in live cells.

Similar content being viewed by others

Data availability

All materials, data, and associated protocols will be made available to all qualified investigators from the corresponding authors upon reasonable request or with a simple institutional material transfer agreement. Source data are provided with this paper.

Code availability

MS raw data have been deposited to MASSIVE (ftp://massive.ucsd.edu/MSV000084971/) under the project name ‘Allosteric interactions in the parathyroid hormone class B GPCR–arrestin complex formation’. Codes for NMR and MD simulations in this study are available from corresponding authors upon reasonable request.

References

  1. de Graaf, C. et al. Extending the structural view of class B GPCRs. Trends Biochem. Sci. 42, 946–960 (2017).

    Article  PubMed  CAS  Google Scholar 

  2. Karageorgos, V. et al. Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones (Athens) 17, 45–59 (2018).

    Article  Google Scholar 

  3. Castro, M., Nikolaev, V. O., Palm, D., Lohse, M. J. & Vilardaga, J. P. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc. Natl Acad. Sci. USA 102, 16084–16089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawai, M., Modder, U. I., Khosla, S. & Rosen, C. J. Emerging therapeutic opportunities for skeletal restoration. Nat. Rev. Drug Discov. 10, 141–156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Parthier, C., Reedtz-Runge, S., Rudolph, R. & Stubbs, M. T. Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem. Sci. 34, 303–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Pioszak, A. A. & Xu, H. E. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc. Natl Acad. Sci. USA 105, 5034–5039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marx, U. C., Adermann, K., Bayer, P., Forssmann, W. G. & Rosch, P. Solution structures of human parathyroid hormone fragments hPTH(1-34) and hPTH(1-39) and bovine parathyroid hormone fragment bPTH(1-37). Biochem. Biophys. Res. Commun. 267, 213–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, L. H. et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science 364, 148–153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miao, Y., Bhattarai, A., Nguyen, A. T. N., Christopoulos, A. & May, L. T. Structural basis for binding of allosteric drug leads in the adenosine A1 receptor. Sci. Rep. 8, 16836 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rana, S. & Sahoo, A. R. Model structures of inactive and peptide agonist bound C5aR: insights into agonist binding, selectivity and activation. Biochem. Biophys. Rep. 1, 85–96 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Zhang, C. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, W., Yen, H. Y., Robinson, C. V. & Sansom, M. S. P. State-dependent lipid interactions with the A2a receptor revealed by MD simulations using in vivo-mimetic membranes. Structure 27, 392–403.e3 (2019) .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mouritsen, O. G. & Zuckermann, M. J. What’s so special about cholesterol? Lipids 39, 1101–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Jin, L. et al. Crystal structure of human parathyroid hormone 1–34 at 0.9-Å resolution. J. Biol. Chem. 275, 27238–27244 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bakan, A., Meireles, L. M. & Bahar, I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eyal, E., Lum, G. & Bahar, I. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31, 1487–1489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lezon, T. R. & Bahar, I. Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh. Biophys. J. 102, 1331–1340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doruker, P., Atilgan, A. R. & Bahar, I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to ɑ-amylase inhibitor. Proteins 40, 512–524 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bahar, I., Lezon, T. R., Bakan, A. & Shrivastava, I. H. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev. 110, 1463–1497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Atilgan, A. R. et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dean, T., Vilardaga, J. P., Potts, J. T. Jr. & Gardella, T. J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol. Endocrinol. 22, 156–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sutkeviciute, I., Clark, L. J., White, A. D., Gardella, T. J. & Vilardaga, J. P. PTH/PTHrP receptor signaling, allostery, and structures. Trends Endocrinol. Metab. 30, 860–874 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ehrenmann, J. et al. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat. Struct. Mol. Biol. 25, 1086–1092 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamelberg, D., Mongan, J. & McCammon, J. A. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y., Harrison, C. B., Schulten, K. & McCammon, J. A. Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov. 4, 015002 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fleetwood, O., Matricon, P., Carlsson, J. & Delemotte, L. Energy landscapes reveal agonist control of G protein-coupled receptor activation via microswitches. Biochemistry 59, 880–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Lovera, S., Cuzzolin, A., Kelm, S., De Fabritiis, G. & Sands, Z. A. Reconstruction of apo A2A receptor activation pathways reveal ligand-competent intermediates and state-dependent cholesterol hotspots. Sci. Rep. 9, 14199 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Isin, B., Schulten, K., Tajkhorshid, E. & Bahar, I. Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Biophys. J. 95, 789–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G. & Barak, L. S. Differential affinities of visual arrestin, βarrestin1, and βarrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farrell, I. S., Toroney, R., Hazen, J. L., Mehl, R. A. & Chin, J. W. Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat. Methods 2, 377–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gardella, T. J. & Juppner, H. Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol. Metab. 12, 210–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Munk, C. et al. An online resource for GPCR structure determination and analysis. Nat. Methods 16, 151–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarkar, K. et al. Modulation of PTH1R signaling by an ECD binding antibody results in inhibition of β-arrestin 2 coupling. Sci. Rep. 9, 14432 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gidon, A. et al. Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat. Chem. Biol. 10, 707–709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–38 (1996).

    Article  Google Scholar 

  51. Bakan, A. et al. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics 30, 2681–2683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hattersley, G., Dean, T., Corbin, B. A., Bahar, H. & Gardella, T. J. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology 157, 141–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Liang, Y. L. et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature 555, 121–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Nikolaev, V. O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M. J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215–37218 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. McGarvey, J. C. et al. Actin-sorting nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J. Biol. Chem. 291, 10986–11002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Chin, J. W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Serfling, R. & Coin, I. Incorporation of unnatural amino acids into proteins expressed in mammalian cells. Methods Enzymol. 580, 89–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Coin, I. et al. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155, 1258–1269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gotze, M. et al. StavroX—a software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectrom. 23, 76–87 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney Disease, the National Institute of General Medical Sciences, the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institute on Drug Abuse of the US National Institutes of Health under grant awards nos. R01-DK111427, R01-DK116780 and R01-DK122259 (to J.-P.V.); DK011794 (to T.J.G.); P41-GM103712 and P30-DA035778 (to I.B.); R01-DA046939 (P.T.); and F31-AR074843 (to L.J.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.J.C. performed and analyzed NMR studies with V.B. and P.T., and MD simulations with J.K., P.D. and I.B. J.Y.L. performed ANM calculations. A.D.W. performed signaling studies. T.B. and I.C. generated arrestin mutants and developed photo-crosslinking assays. I.S., F.J.-A., S.L., F.F. and K.X. optimized and performed photo-crosslinking coupled to MS assays. I.S. designed and optimized purification for the PTH(1–34) construct. T.J.G. provided guidance for radioligand binding studies. J.-P.V. was responsible for the overall conceptual composition and supervision of the study in collaboration with I.B., and wrote the manuscript with L.J.C. and I.S.

Corresponding authors

Correspondence to Ivet Bahar or Jean-Pierre Vilardaga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Two-dimensional 1H-15N transverse relaxation optimized spectroscopy (TROSY) spectra of 15N-PTH(1–34).

Spectra were obtained in the absence (blue) or presence of PTHRECD, 0.5 (pink) or 0.75 (purple) molar ratio. a, On the left panel, full spectra showing all peaks of PTH(1–34). On the right panel, spectra of Gly12 and Ser17. Ser17 peak was too weak to be seen at 0.75 molar ratio. b, Zoomed-in spectra showing most peaks of PTH(1–34). PTH(1–34) peaks are labeled with bold text, and peaks corresponding to attached Strep-tag are labeled with italicized text. c, Zoomed-in spectral region of PTH His9. The conformation of His9 in free PTH is marked by Peak #1. Peak #2 represents the new conformation of His9 that occurred in the presence of 0.5 molar ratio PTHRECD and becomes stronger at 0.75 molar ratio PTHRECD. d, Zoomed-in spectral region of PTH Asn16, showing PTH conformational changes in the presence of PTHRECD. Peak #1 represents the conformation of Asn16 in the free PTH. Peak #2 represents the new conformation of Asn16 when PTH is bound to PTHRECD.

Source data

Extended Data Fig. 2 TROSY peak intensity (height), peak intensity ratio (Ibound/Ifree), and chemical shift perturbation (Δδ).

a, Peak intensities (normalized with respect to the number of scans in TROSY experiments) varied along the PTH sequence and the variations increased upon binding to 0.5 and 0.75 molar ratios of PTHRECD due to reduced PTH flexibility. b, Peak intensity ratio (Ibound/Ifree) and c, Chemical shift perturbation (Δδ) of individual residues upon binding to 0.5 or 0.75 molar ratios of PTHRECD. Residue intensities from the same experiment were normalized with respect to the intensity of Ser3 (indicated by an arrow) prior to calculations in b. Residues 15–17, indicated by asterisks, do not have visible peaks in the presence of 0.75 molar ratio PTHRECD. The new peak at Asn16 in the presence of 0.75 molar ratio PTHRECD was not used for Ibound/Ifree analyses but is displayed in the chemical shift perturbation plot. PTH(1–34) is separated from residues in the linker and Strep-tag by a thin dashed line.

Source data

Extended Data Fig. 3 Docking of PTH onto PTHRECD in the apo state using conformers from MD.

The NMR structural ensemble of free PTH(1–34) (cyan, PDB 1ZWA) was aligned onto MD snapshots of apo PTHR (dark green, see Methods for docking protocol). When the PTH ensemble is aligned onto PTHRECD oriented toward PTHRTMD, the N-terminal portion of PTH notably clashes with extracellular loops 1 and 2 (ECL1 and ECL2, colored purple and light orange, respectively). These clashes are reduced when the PTH ensemble is aligned onto PTHRECD oriented away from PTHRTMD.

Extended Data Fig. 4 Binding, trafficking and signaling properties of PTHH9A.

a, Co-immunoprecipitation of HA-tagged PTHR and β-arrestins from HEK293 cells after stimulation with PTHWT. Stimulation with PTHH9A does not immunoprecipitate β-arrestin with PTHRHA. b, Averaged time courses of PTHR internalization after 60 s stimulation with 100 nM PTHWT or PTHH9A in HEK293 cells stably expressing PTHRSEP. Data represent the mean ± s.d. of N = 2 experiments with n = 18 cells per experiment (independent biological replicates). c, Radioligand competition assays of PTHWT and PTHH9A binding to PTHR R0 (G protein-free) conformation. d, Radioligand competition assays of PTHWT and PTHH9A binding to PTHR RG conformation. For c, d, data are averaged from N = 4 and N = 5 independent experiments, respectively. Square points and error bars represent mean ± s.e.m. Individual data points are also shown.

Source data

Extended Data Fig. 5 Interactions between PTHWT His9 side chain and PTHR residues, and comparison with the interactions of the mutant PTHH9A.

Panels a-e display MD snapshots of PTHWT-bound receptor, and panel f, those for the mutant H9A-bound receptor. PTHWT is cyan, and PTHR is green in panels a–e, and PTHH9A is light pink, and PTHR is hot pink in panel f. MD snapshots of PTHWT-bound receptor showing different interactions. a, His9 hydrogen bond with Tyr429 (ECL3). b, Hydrogen bonds with Ser355 and Gly357 main chain (ECL2). c, Hydrogen bond with Ser355 side chain (ECL2). d, Aromatic-aromatic interactions between His9 and Tyr429 (ECL3). e, Hydrogen bond with Gln364 (TM5). f, Interactions between PTHR Leu354 and PTHH9A Ala9 in triplicate simulations. MD snapshots were collected every 10 ns during the last 50 ns of each simulation are aligned by PTHRTMD (residues 180 to 460).

Extended Data Fig. 6 Receptor conformations stabilized by PTHWT and PTHH9A.

Snapshots of PTHWT- and PTHH9A-bound receptor collected during the last 50 ns of triplicate simulations (10 ns intervals), aligned by PTHR transmembrane helices. a, Aligned receptor structures, with dashed boxes indicating areas shown in b, c. The arrow points to the helical turn (residues 394 to 397) in ICL3. ECD (residues 27 to 179), ECL1 (residues 247 to 275), TM3 residues 276 to 280, and peptide residues 14 to 34 are hidden for clarity. b, ECL2 conformation. c, Left, relative inward movement of PTHH9A–PTHR TM5. Right, relative inward movement of PTHH9A–PTHR TM6. d, ICL3 conformations in PTHWT- and PTHH9A-bound receptor snapshots after one 200 ns simulation. The helical turn in ICL3 stabilized by PTHWT is indicated by an arrow.

Extended Data Fig. 7 PTHH9A-stabilized kink 5 and its consequences.

a, Thr392-Val455 distance distributions over triplicate 200 ns simulations of apo, PTHWT-bound, and PTHH9A-bound receptor. Raw data are shown as thin lines. Second-order smoothed data (over 30 neighbors) are shown as thick lines. Top, plots starting at y = 0. Bottom, plots starting at y = 20. b, Alignment of PTHH9A-bound receptor (hot pink) TMD with the TMD of the PTHR–Gs cryo-EM structure. Gαs is colored purple. Clashing residues are shown as sticks. c, Interaction of PTHR Arg3965.75 with β-arrestin-1. In the PTHWT-bound model (green), positively charged Arg396 engages with negatively charged Glu155 and Glu156 from β-arrestin-1. In the PTHH9A-bound model (hot pink), Arg396 is oriented away from β-arrestin Glu155-156, toward Arg312. Since arginine side chains are flexible, Arg396 in the PTHH9A-bound model would reorient away from Arg312.

Source data

Extended Data Fig. 8 Accelerated MD (aMD) of apo PTHR.

Two snapshots from 100 ns aMD simulation of apo PTHR were aligned by their transmembrane helices. The snapshot exhibiting the largest TM6 movement is colored dark green. The snapshot with the smallest TM6 displacement is colored yellow. a, Full receptor structures. b, Zoomed-in structures, with TM5, ICL3, and TM6 of each receptor indicated by colored arrows.

Extended Data Fig. 9 LC-MS/MS data identifying photo-crosslinking between PTHR and β-arrestin-1 F75Bpa in PTH-stimulated cells.

a, PTHR Thr392. b, PTHR Val384.

Extended Data Table 1 Binding to the R0 and RG states of the PTHR. Reported are ligand concentrations that inhibited binding of radioligand by 50% (IC50). Data are the mean value ± s.e.m. of n = 4 (R0 state), and n = 5 (RG state), each in duplicate. P values are pairwise comparison (Student’s t-test, two-sided) to PTH.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Table 1.

Reporting Summary

Supplementary Video 1

Motion of PTHR in the presence of PTH. Receptor is shown in yellow (most of the structure) and red (from Arg390 to Leu481), and PTH is shown in green. Thr392 and Val455 are shown as black balls, and Leu354 and Ala9 as blue balls. The video illustrates the collective movement of the complex along ANM soft modes 3, 14 and 18.

Supplementary Data

Unprocessed blots for Supplementary Fig. 1b

Source data

Source Data Fig. 1, Extended Data Figs. 1 and 2

NMR data (peak assignments, chemical shifts, peak intensities and relevant calculations)

Source Data Fig. 2b

R.m.s.d. from MD simulations

Source Data Fig. 3

Statistical source data: (1) cAMP assay, (2) Barr recruitment

Source Data Fig. 4, Extended Data Fig. 7a

Statistical source data: (1) T392-V455 distances, (2) PTHR activation

Source Data Fig. 5a–c

Unprocessed western blots

Source Data Fig. 5d

Statistical source data: western blot band intensity plot

Source Data Extended Data Fig. 4

Statistical source data: (1) internalization assay, (2) binding assays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, L.J., Krieger, J., White, A.D. et al. Allosteric interactions in the parathyroid hormone GPCR–arrestin complex formation. Nat Chem Biol 16, 1096–1104 (2020). https://doi.org/10.1038/s41589-020-0567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0567-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research