Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The current paradigm and challenges ahead for the dormancy of disseminated tumor cells

Abstract

Disseminated tumor cells (DTCs) are known to enter a state of dormancy that is achieved via growth arrest of DTCs and/or a form of population equilibrium state, strongly influenced by the organ microenvironment. During this time, expansion of residual disseminated cancer is paused and DTCs survive to fuel relapse, sometimes decades later. This notion has opened a new window of opportunity for intervening and preventing relapse. Here we review recent data that have further augmented the understanding of cancer dormancy and discuss how this is leading to new strategies for monitoring and targeting dormant cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences and commonalities among normal quiescent, senescent, differentiated cells and dormant cancer cells.
Fig. 2: The various BM niches, cell types and cues that regulate the dormancy of DTCs and HSCs.
Fig. 3: Cues, receptors and cell types involved in DTC reactivation and pro-dormancy niches.

Similar content being viewed by others

References

  1. Almog, N. et al. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J. 20, 947–949 (2006).

    CAS  PubMed  Google Scholar 

  2. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    CAS  PubMed  Google Scholar 

  3. Holmgren, L., O’Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 (1995).

    CAS  PubMed  Google Scholar 

  4. Uhr, J. W. & Marches, R. Dormancy in a model of murine B cell lymphoma. Semin. Cancer Biol. 11, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  5. Marches, R., Hsueh, R. & Uhr, J. W. Cancer dormancy and cell signaling: induction of p21waf1 initiated by membrane IgM engagement increases survival of B lymphoma cells. Proc. Natl Acad. Sci. USA 96, 8711–8715 (1999).

    CAS  PubMed  Google Scholar 

  6. Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-γ in establishing and maintaining the tumor-dormant state. J. Immunol. 162, 2842–2849 (1999).

    CAS  PubMed  Google Scholar 

  7. Marches, R., Scheuermann, R. H. & Uhr, J. W. Cancer dormancy: role of cyclin-dependent kinase inhibitors in induction of cell cycle arrest mediated via membrane IgM. Cancer Res. 58, 691–697 (1998).

    CAS  PubMed  Google Scholar 

  8. Vitetta, E. S. et al. Tumor dormancy and cell signaling. V. Regrowth of the BCL1 tumor after dormancy is established. Blood 89, 4425–4436 (1997).

    CAS  PubMed  Google Scholar 

  9. Uhr, J. W. et al. Role of antibody signaling in inducing tumor dormancy. Adv. Exp. Med. Biol. 406, 69–74 (1996).

    CAS  PubMed  Google Scholar 

  10. Racila, E. et al. Tumor dormancy and cell signaling: anti-mu-induced apoptosis in human B-lymphoma cells is not caused by an APO-1-APO-1 ligand interaction. Proc. Natl Acad. Sci. USA 93, 2165–2168 (1996).

    CAS  PubMed  Google Scholar 

  11. Racila, E. et al. Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med. 181, 1539–1550 (1995).

    CAS  PubMed  Google Scholar 

  12. Marches, R. et al. Tumour dormancy and cell signalling-III: Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells. Ther. Immunol. 2, 125–136 (1995).

    CAS  PubMed  Google Scholar 

  13. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  14. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).

    CAS  PubMed  Google Scholar 

  16. Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003).

    CAS  PubMed  Google Scholar 

  17. Aguirre-Ghiso, J. A. & Sosa, M. S. Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Ann. Rev. Cancer Biol. 2, 377–393 (2018).

    Google Scholar 

  18. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Giancotti, F. G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schewe, D. M. & Aguirre-Ghiso, J. A. ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl Acad. Sci. USA 105, 10519–10524 (2008).

    CAS  PubMed  Google Scholar 

  21. Ranganathan, A. C., Ojha, S., Kourtidis, A., Conklin, D. S. & Aguirre-Ghiso, J. A. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res. 68, 3260–3268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702–1711 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Carlson, P. et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21, 238–250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghajar, C. M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer 15, 238–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguirre-Ghiso, J. A. How dormant cancer persists and reawakens. Science 361, 1314–1315 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aguirre-Ghiso, J. A. The problem of cancer dormancy: understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5, 1740–1743 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Linde, N., Fluegen, G. & Aguirre-Ghiso, J. A. The relationship between dormant cancer cells and their microenvironment. Adv. Cancer Res. 132, 45–71 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pommier, A. et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360, eaao4908 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Fluegen, G. et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol. 19, 120–132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bragado, P. et al. TGF–β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goel, A. J., Rieder, M. K., Arnold, H. H., Radice, G. L. & Krauss, R. S. Niche cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep. 21, 2236–2250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grzelak, C. A. & Ghajar, C. M. Metastasis ‘systems’ biology: how are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? Curr. Opin. Cell Biol. 48, 79–86 (2017).

    CAS  PubMed  Google Scholar 

  40. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA 104, 10063–10068 (2007).

    CAS  PubMed  Google Scholar 

  42. Sharma, S. et al. Secreted Protein Acidic and Rich in Cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. J. Biol. Chem. 291, 19351–19363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    CAS  Google Scholar 

  45. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sosa, M. S. et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun. 6, 6170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cackowski, F. C. et al. Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J. Cell. Biochem. 118, 891–902 (2017).

    CAS  PubMed  Google Scholar 

  48. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    CAS  PubMed  Google Scholar 

  50. Metz, E. P. & Rizzino, A. Sox2 dosage: A critical determinant in the functions of Sox2 in both normal and tumor cells. J. Cell. Physiol. 234, 19298–19306 (2019).

    CAS  PubMed  Google Scholar 

  51. Jia, Q. et al. Low levels of Sox2 are required for melanoma tumor-repopulating cell dormancy. Theranostics 9, 424–435 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Duarte, L. F. et al. Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat. Commun. 5, 5210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kishino, E. et al. Anti-cell growth and anti-cancer stem cell activity of the CDK4/6 inhibitor palbociclib in breast cancer cells. Breast Cancer 27, 415–425 (2019).

    PubMed  Google Scholar 

  54. Sosa, M. S., Bernstein, E. & Aguirre-Ghiso, J. A. in Tumor Dormancy and Recurrence (eds. Wang, Y. & Crea, F.) 1–16 (Springer International Publishing, 2017).

  55. Braun, S. et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med. 342, 525–533 (2000).

    CAS  PubMed  Google Scholar 

  56. Chéry, L. et al. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5, 9939–9951 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Borgen, E. et al. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res. 20, 120 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Naume, B. et al. Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J. Clin. Oncol. 32, 3848–3857 (2014).

    PubMed  Google Scholar 

  59. Lawson, M. A. et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 6, 8983 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng, H. et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32, 731–747.e736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, H. et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34, 823–839.e827 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Luo, X. et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92 (2016).

    CAS  PubMed  Google Scholar 

  64. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Agarwal, P. et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell 24, 769–784.e766 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Price, T. T. et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 8, 340ra73 (2016).

    PubMed  Google Scholar 

  67. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Esposito, M. et al. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21, 627–639 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gawrzak, S. et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Biol. 20, 211–221 (2018).

    CAS  PubMed  Google Scholar 

  70. Goss, P. E. & Chambers, A. F. Does tumour dormancy offer a therapeutic target? Nat. Rev. Cancer 10, 871–877 (2010).

    CAS  PubMed  Google Scholar 

  71. Hong, S. P. et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy. Nat. Commun. 10, 3840 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Selli, C. et al. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours. Breast Cancer Res. 21, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Cackowski, F. C. & Taichman, R. S. Parallels between hematopoietic stem cell and prostate cancer disseminated tumor cell regulation. Bone 119, 82–86 (2019).

    PubMed  Google Scholar 

  74. Webster, M. R. et al. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res. 28, 184–195 (2015).

    CAS  PubMed  Google Scholar 

  75. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8, 361ra138 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Miarka, L. et al. The hepatic microenvironment and TRAIL-R2 impact outgrowth of liver metastases in pancreatic cancer after surgical resection. Cancers 11, E745 (2019).

    PubMed  Google Scholar 

  78. Singh, A. et al. Angiocrine signals regulate quiescence and therapy resistance in bone metastasis. JCI Insight 4, 125679 (2019).

    PubMed  Google Scholar 

  79. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    CAS  PubMed  Google Scholar 

  80. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    CAS  PubMed  Google Scholar 

  81. Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82–95 (2019).

    CAS  PubMed  Google Scholar 

  82. Boudreau, N. & Bissell, M. J. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell Biol. 10, 640–646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Postovit, L. M. et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc. Natl Acad. Sci. USA 105, 4329–4334 (2008).

    CAS  PubMed  Google Scholar 

  85. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    CAS  PubMed  Google Scholar 

  86. Saad, N. et al. Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy. Oncotarget 9, 16008–16027 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Nobre, A. R., Entenberg, D., Wang, Y., Condeelis, J. & Aguirre-Ghiso, J. A. The different routes to metastasis via hypoxia-regulated programs. Trends Cell Biol. 28, 941–956 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rusu, P. et al. GPD1 specifically marks dormant glioma stem cells with a distinct metabolic profile. Cell Stem Cell 25, 241–257.e248 (2019).

    CAS  PubMed  Google Scholar 

  89. Vera-Ramirez, L., Vodnala, S. K., Nini, R., Hunter, K. W. & Green, J. E. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 9, 1944 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. La Belle Flynn, A. et al. Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat. Commun. 10, 3668 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Sosa, M. S., Bragado, P., Debnath, J. & Aguirre-Ghiso, J. A. Regulation of tumor cell dormancy by tissue microenvironments and autophagy. Adv. Exp. Med. Biol. 734, 73–89 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Saudemont, A. & Quesnel, B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 104, 2124–2133 (2004).

    CAS  PubMed  Google Scholar 

  94. Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285.e275 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Piranlioglu, R. et al. Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nat. Commun. 10, 1430 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med. 10, eaan3464 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Johnson, R. W. et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat. Cell Biol. 18, 1078–1089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takeishi, S. et al. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 23, 347–361 (2013).

    CAS  PubMed  Google Scholar 

  99. Zhang, W. et al. Fbxw7 and Skp2 regulate stem cell switch between quiescence and mitotic division in lung adenocarcinoma. BioMed Res. Int. 2019, 9648269 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Shimizu, H., Takeishi, S., Nakatsumi, H. & Nakayama, K. I. Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells. JCI Insight 4, 125138 (2019).

    PubMed  Google Scholar 

  101. Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017).

    CAS  PubMed  Google Scholar 

  102. Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692–702 (2017).

    CAS  PubMed  Google Scholar 

  103. Jeanpierre, S. et al. The quiescent fraction of chronic myeloid leukemic stem cells depends on BMPR1B, Stat3 and BMP4-niche signals to persist in patients in remission. Haematologica https://doi.org/10.3324/haematol.2019.232793 (2020).

  104. Zhang, B. et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat. Med. 24, 450–462 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.e66 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Passaro, D. et al. Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell 32, 324–341.e326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Abdelhamed, S. et al. Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. EMBO Rep. 20, e47546 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. Kumar, B. et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 32, 575–587 (2018).

    CAS  PubMed  Google Scholar 

  109. Aguirre-Ghiso, J. A., Bragado, P. & Sosa, M. S. Metastasis awakening: targeting dormant cancer. Nat. Med. 19, 276–277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Avivar-Valderas, A., Wen, H. C. & Aguirre-Ghiso, J. A. Stress signaling and the shaping of the mammary tissue in development and cancer. Oncogene 33, 5483–5490 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sisay, M., Mengistu, G. & Edessa, D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: potential targets for anticancer therapy. Onco Targets Ther. 10, 3801–3810 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Esposito, M. & Kang, Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol. Ther. 141, 222–233 (2014).

    CAS  PubMed  Google Scholar 

  113. Coleman, R. et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 60–72 (2020).

    CAS  PubMed  Google Scholar 

  114. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    CAS  PubMed  Google Scholar 

  115. Yumoto, K. et al. Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci. Rep. 6, 36520 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jung, Y. et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 7, 25698–25711 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bowers, M. et al. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125, 2678–2688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Aguirre-Ghiso and Maguer-Satta labs for useful discussions during the preparation of this article. E.R. is supported by a doctoral fellowship from the University of Lyon, France, and by CLARA and IDEX Lyon mobility fellowships. E.R., A.R.N. and J.A.A.-G. are supported by grants CA109182, CA218024, CA216248 and CA196521 from the US National Institutes of Health; the Jimmy V Foundation; the Falk Medical Research Trust; HiberCell; and Metavivor. J.A.A.-G. is a Samuel Waxman Cancer Research Foundation Investigator. V.M.S. is supported by grants from ‘Fondation de France’ 2014-0047501 and 2017-00076282/Fondation Ramona Ehrman Amador, ‘Association Laurette Fugain’ ALF2014-03, Ligue contre le Cancer (Haute Savoie, Loire, Puy de Dôme and Rhone), ‘Association ALTE-SMP’ and the Institut Convergence PLASCAN.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of the article, performed literature searches, integrated the information, and wrote, discussed and edited the manuscript.

Corresponding author

Correspondence to Julio A. Aguirre-Ghiso.

Ethics declarations

Competing interests

J.A.A.-G. is a scientific co-founder of, scientific advisory board member and equity owner in HiberCell and receives financial compensation as a consultant for HiberCell, a Mount Sinai spin-off company focused on the research and development of therapeutics that prevent or delay the recurrence of cancer.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risson, E., Nobre, A.R., Maguer-Satta, V. et al. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat Cancer 1, 672–680 (2020). https://doi.org/10.1038/s43018-020-0088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-020-0088-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer