Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 6, 2020

Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state

  • Maximilian K. Reimann , Judith Bönnighausen , Steffen Klenner and Rainer Pöttgen EMAIL logo

Abstract

Samples of the solid solutions EuAu4Cd2−xMgx were synthesized from the elements in sealed tantalum ampoules. The elements were reacted at a maximum temperature of 1273 K followed by slow cooling. For crystal growth, the polycrystalline samples were ground to powders, pressed to pellets and annealed again. All samples crystallize with the tetragonal YbAl4Mo2-type structure, space group I4/mmm. The solid solution extends up to x = 1 and the Cd/Mg substitution has only a minor influence on the lattice parameters. The samples have been characterized by powder X-ray diffraction and the structure of EuAu4Cd1.58(2)Mg0.42(2) was refined from single crystal X-ray diffractometer data: a = 715.46(14), c = 549.96(11) pm, wR2 = 0.0334, 180 F2 values and 11 variables. The striking crystal chemical motifs of the EuAu4Cd2−xMgx structures are Eu@Au12 and (Cd/Mg)@Au8(Cd/Mg)2 polyhedra and linear Cd/Mg chains in form of a tetragonal rod packing with distances of 275 pm for Cd/Mg–Cd/Mg. Temperature dependent magnetic susceptibility measurements of all samples from the solid solutions EuAu4Cd2−xMgx revealed Curie–Weiss behavior and stable divalent europium. All samples are ordered ferromagnetically around T = 16 K, and magnetization isotherms at 3 K classify these materials as soft ferromagnets. It is remarkable that the structural Cd/Mg disorder within the chains does not influence the ferromagnetic ground state. The divalent nature of europium in these intermetallics was exemplarily studied for the EuAu4Cd1.4Mg0.6 sample by 151Eu Mössbauer spectroscopy. At 6 K the isomer shift is −9.95(4) mm s−1 and one observes full magnetic hyperfine field splitting with Bhf = 27.1(1) T.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20); ASM International®: Materials Park, Ohio (USA), 2019.Search in Google Scholar

2. Fornasini, M. L., Palenzona, A. J. Less-Common Met. 1976, 45, 137.10.1016/0022-5088(76)90205-8Search in Google Scholar

3. Hryn, Y. N., Rogl, P. Visn. L’viv Derzh. Univ., Ser. Khim. 1986, 27, 38.Search in Google Scholar

4. Grin, Y., Gavrilenko, I. S., Markiv, V. Y., Yarmolyuk, Y. P. Dopov. Akad. Nauk Ukr. RSR Ser. A 1980, 73.Search in Google Scholar

5. Markiv, V. Y., Zhunkivska, T. G., Velyavina, N. M., Lisenko, O. O. Dopov. Akad. Nauk Ukr. RSR Ser. A 1983, 81.Search in Google Scholar

6. Gosh, K., Ramakrishnan, S., Chandra, G. J. Magn. Magn Mater. 1993, 119, L5.10.1016/0304-8853(93)90495-NSearch in Google Scholar

7. Abe, H., Yoshii, K., Kitazawa, H. J. Phys. Soc. Jpn. 2001, 70, 3042.10.1143/JPSJ.70.3042Search in Google Scholar

8. Matar, S. F., Pöttgen, R. Z. Naturforsch. 2013, 68b, 23.10.5560/znb.2013-2299Search in Google Scholar

9. Zelinskiy, A., Gladyshevskii, R. Visn. L’viv Derzh. Univ., Ser. Khim. 2016, 57, 70.Search in Google Scholar

10. Markiv, V. Y. Dopov. Akad. Nauk Ukr. RSR Ser. A 1981, 86.Search in Google Scholar

11. Verbovytskyy, Y. J. Alloys Compd. 2016, 666, 440.10.1016/j.jallcom.2016.01.109Search in Google Scholar

12. Muts, I., Matar, S. F., Rodewald, U. C., Zaremba, V. I., Pöttgen, R. Z. Naturforsch. 2011, 66b, 993.10.1515/znb-2011-1003Search in Google Scholar

13. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A., Fadda, G. Eur. J. Inorg. Chem. 2012, 4811.10.1002/ejic.201200700Search in Google Scholar

14. Gerke, B., Niehaus, O., Hoffmann, R.-D. Z. Anorg. Allg. Chem. 2013, 639, 2575.10.1002/zaac.201300260Search in Google Scholar

15. Tappe, F., Matar, S. F., Schwickert, C., Winter, F., Gerke, B., Pöttgen, R. Monatsh. Chem. 2013, 144, 751.10.1007/s00706-013-0932-8Search in Google Scholar

16. Paulsen, C., Block, T., Benndorf, C., Oeckler, O., Bönnighausen, J., Janka, O., Pöttgen, R. Z. Naturforsch. 2020, 75b, 73.10.1515/znb-2019-0153Search in Google Scholar

17. Troć, R., Andruszkiewicz, R., Pietri, R., Andraka, B. J. Magn. Magn Mater. 1998, 183, 132.10.1016/S0304-8853(97)00248-5Search in Google Scholar

18. Troć, R., Tran, V. H., Wołcyrz, M., André, G., Bourée, F. J. Magn. Magn Mater. 1998, 190, 251.10.1016/S0304-8853(98)00293-5Search in Google Scholar

19. Reimann, M. K., Bönnighausen, J., Klenner, S., Pöttgen, R. Monatsh. Chem. 2020, 151, 861, https://doi.org/10.1007/s00706-020-02618-1.Search in Google Scholar

20. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133.Search in Google Scholar

21. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

22. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

23. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 2, 42.Search in Google Scholar

24. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

25. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

26. Matsuo, Y., Minamigawa, S., Katada, K. Scripta Metall. 1978, 12, 821.10.1016/0036-9748(78)90043-1Search in Google Scholar

27. Mishra, R., Hermes, W., Rodewald, U. C., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2008, 634, 470.10.1002/zaac.200700448Search in Google Scholar

28. Hartwig, S., Prokeš, K., Hansen, T., Ritter, C., Gerke, B., Pöttgen, R., Mydosh, J. A., Förster, T. Phys. Rev. B 2015, 92, 024420.10.1103/PhysRevB.92.024420Search in Google Scholar

29. O’Keeffe, M., Andersson, S. Acta Crystallogr. 1977, A33, 914.10.1107/S0567739477002228Search in Google Scholar

30. Steeple, H. Acta Crystallogr. 1952, 5, 247.10.1107/S0365110X52000642Search in Google Scholar

31. Edwards, D. A., Wallace, W. E., Craig, R. S. J. Am. Chem. Soc. 1952, 74, 5256.10.1021/ja01141a006Search in Google Scholar

32. Lueken, H. Magnetochemie; B. G. Teubner Stuttgart: Leipzig, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

33. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds.; De Gruyter: Berlin, 2020.10.1515/9783110654929-021Search in Google Scholar

Received: 2020-04-27
Accepted: 2020-05-10
Published Online: 2020-07-06
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0066/html
Scroll to top button