Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2020

EEG Source Imaging (ESI) utility in clinical practice

  • Pegah Khosropanah , Eric Tatt-Wei Ho , Kheng-Seang Lim ORCID logo EMAIL logo , Si-Lei Fong , Minh-An Thuy Le and Vairavan Narayanan

Abstract

Epilepsy surgery is an important treatment modality for medically refractory focal epilepsy. The outcome of surgery usually depends on the localization accuracy of the epileptogenic zone (EZ) during pre-surgical evaluation. Good localization can be achieved with various electrophysiological and neuroimaging approaches. However, each approach has its own merits and limitations. Electroencephalography (EEG) Source Imaging (ESI) is an emerging model-based computational technique to localize cortical sources of electrical activity within the brain volume, three-dimensionally. ESI based pre-surgical evaluation gives an overall clinical yield of 73–91%, depending on choice of head model, inverse solution and EEG electrode density. It is a cost effective, non-invasive method which provides valuable additional information in presurgical evaluation due to its high localizing value specifically in MRI-negative cases, extra or basal temporal lobe epilepsy, multifocal lesions such as tuberous sclerosis or cases with multiple hypotheses. Unfortunately, less than 1% of surgical centers in developing countries use this method as a part of pre-surgical evaluation. This review promotes ESI as a useful clinical tool especially for patients with lesion-negative MRI to determine EZ cost-effectively with high accuracy under the optimized conditions.


Corresponding author: Kheng-Seang Lim, Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, E-mail:

  1. Research funding: This study is supported by University of Malaya Research Grant (RP052C-17HTM) and the Ministry of Higher Education, Malaysia HI-CoE program to the Center for Intelligent Signal & Imaging Research, Universiti Teknologi PETRONAS.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Informed consent was obtained from all individuals included in this study.

References

1. Rosenow, F, Lüders, H. Presurgical evaluation of epilepsy. Brain 2001;124:1683–700. DOI: https://doi.org/10.1093/brain/124.9.1683.Search in Google Scholar PubMed

2. Luders, HO, Najm, I, Nair, D, Widdess-Walsh, P, Bingman, W. The epileptogenic zone: general principles. Epileptic Disord 2006;8:S1–9.10.3109/9780203091708-107Search in Google Scholar

3. Ahlfors, SP, Han, J, Belliveau, JW, Hämäläinen, MS. Sensitivity of MEG and EEG to source orientation. Brain Topogr 2010;23:227–32. DOI: https://doi.org/10.1007/s10548-010-0154-x.Search in Google Scholar PubMed PubMed Central

4. Ponnatapura, J, Vemanna, S, Ballal, S, Singla, A. Utility of magnetic resonance imaging brain epilepsy protocol in new-onset seizures: how is it different in developing countries?. J Clin Imaging Sci 2018;8:43. DOI: https://doi.org/10.4103/jcis.JCIS_38_18.Search in Google Scholar PubMed PubMed Central

5. von Oertzen, J, Urbach, H, Jungbluth, S, Kurthen, M, Reuber, M, Fernández, G, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 2002;73:643. DOI: https://doi.org/10.1136/jnnp.73.6.643.Search in Google Scholar PubMed PubMed Central

6. Besson, P, Andermann, F, Dubeau, F, Bernasconi, A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain 2008;131:3246–55. DOI: https://doi.org/10.1093/brain/awn224.Search in Google Scholar PubMed

7. Robertson, MS, Liu, X, Plishker, W, Zaki, GF, Vyas, PK, Safdar, NM, et al. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us!. Pediatr Radiol 2016;46:1552–61. DOI: https://doi.org/10.1007/s00247-016-3641-8.Search in Google Scholar PubMed PubMed Central

8. Wang, ZI, Jones, SE, Jaisani, Z, Najm, IM, Prayson, RA, Burgess, RC, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol 2015;77:1060–75. DOI: https://doi.org/10.1002/ana.24407.Search in Google Scholar PubMed PubMed Central

9. Kim, S, Mountz, JM. SPECT imaging of epilepsy: an overview and comparison with F-18 FDG PET. Int J Mol Imaging 2011;2011:813028. DOI: https://doi.org/10.1155/2011/813028.Search in Google Scholar PubMed PubMed Central

10. Grinenko, O, Li, J, Mosher, JC, Wang, IZ, Bulacio, JC, Gonzalez-Martinez, J, et al. A fingerprint of the epileptogenic zone in human epilepsies. Brain 2018;141:117–31. DOI: https://doi.org/10.1093/brain/awx306.Search in Google Scholar PubMed PubMed Central

11. Papadelis, C, Tamilia, E, Stufflebeam, S, Grant, PE, Madsen, JR, Pearl, PL, et al. Interictal high frequency oscillations detected with simultaneous magnetoencephalography and electroencephalography as biomarker of pediatric epilepsy. J Vis Exp 2016:54883. https://doi.org/10.3791/54883.Search in Google Scholar

12. Basiri, R, Shariatzadeh, A, Wiebe, S, Aghakhani, Y. Focal epilepsy without interictal spikes on scalp EEG: a common finding of uncertain significance. Epilepsy Res 2019;150:1–6. DOI: https://doi.org/10.1016/j.eplepsyres.2018.12.009.Search in Google Scholar

13. Penfield, WG. Epilepsy and the functional anatomy of the human brain. Oxford, England: Little Brown & Co.; 1954.10.1097/00007611-195407000-00024Search in Google Scholar

14. Cooper, R, Winter, AL, Crow, HJ, Walter, WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroen Clin Neuro 1965;18:217–28. DOI: https://doi.org/10.1016/0013-4694(65)90088-X.Search in Google Scholar

15. Tao, JX, Ray, A, Hawes-Ebersole, S, Ebersole, JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 2005;46:669–76. DOI: https://doi.org/10.1111/j.1528-1167.2005.11404.x.Search in Google Scholar PubMed

16. Ray, A, Tao, JX, Hawes-Ebersole, SM, Ebersole, JS. Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. Clin Neurophysiol 2007;118:69–79. DOI: https://doi.org/10.1016/j.clinph.2006.09.010.Search in Google Scholar PubMed

17. Plummer, C, Harvey, AS, Cook, M. EEG source localization in focal epilepsy: where are we now?. Epilepsia 2008;49:201–18. DOI: https://doi.org/10.1111/j.1528-1167.2007.01381.x.Search in Google Scholar PubMed

18. Brodbeck, V, Lascano, AM, Spinelli, L, Seeck, M, Michel, CM. Accuracy of EEG source imaging of epileptic spikes in patients with large brain lesions. Clin Neurophysiol 2009;120:679–85. DOI: https://doi.org/10.1016/j.clinph.2009.01.011.Search in Google Scholar PubMed

19. Sperli, F, Spinelli, L, Seeck, M, Kurian, M, Michel, CM, Lantz, G. EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 2006;47:981–90. DOI: https://doi.org/10.1111/j.1528-1167.2006.00550.x.Search in Google Scholar PubMed

20. Centeno, M, Tierney, TM, Perani, S, Shamshiri, EA, St Pier, K, Wilkinson, C, et al. Combined electroencephalography-functional magnetic resonance imaging and electrical source imaging improves localization of pediatric focal epilepsy. Ann Neurol 2017;82:278–87. DOI: https://doi.org/10.1002/ana.25003.Search in Google Scholar PubMed

21. Russo, A, Lallas, M, Jayakar, P, Miller, I, Hyslop, A, Dunoyer, C, et al. The diagnostic utility of 3D-ESI rotating and moving dipole methodology in the pre-surgical evaluation of MRI-negative childhood epilepsy due to focal cortical dysplasia. Epilepsia 2016;57:1450–7. DOI: https://doi.org/10.1111/epi.13454.Search in Google Scholar PubMed

22. Lantz, G, Michel, CM. Electric source imaging of epileptic foci. Epileptologie 2004:117–21.Search in Google Scholar

23. Abdallah, C, Maillard, LG, Rikir, E, Jonas, J, Thiriaux, A, Gavaret, M, et al. Localizing value of electrical source imaging: frontal lobe, malformations of cortical development and negative MRI related epilepsies are the best candidates. Neuroimage Clin 2017;16:319–29. DOI: https://doi.org/10.1016/j.nicl.2017.08.009.Search in Google Scholar PubMed PubMed Central

24. Assaf, BA, Ebersole, JS. Continuous source imaging of scalp ictal rhythms in temporal lobe epilepsy. Epilepsia 1997;38:1114–23. DOI: https://doi.org/10.1111/j.1528-1157.1997.tb01201.x.Search in Google Scholar PubMed

25. Habib, MA, Ibrahim, F, Mohktar, MS, Kamaruzzaman, SB, Rahmat, K, Lim, KS. Ictal EEG source imaging for presurgical evaluation of refractory focal epilepsy. World Neurosurg 2016;88:576–85. DOI: https://doi.org/10.1016/j.wneu.2015.10.096.Search in Google Scholar PubMed

26. Kovac, S, Chaudhary, UJ, Rodionov, R, Mantoan, L, Scott, CA, Lemieux, L, et al. Ictal EEG source imaging in frontal lobe epilepsy leads to improved lateralization compared with visual analysis. J Clin Neurophysiol 2014;31:10–20. DOI: https://doi.org/10.1097/WNP.0000000000000022.Search in Google Scholar PubMed

27. Kim, DW, Jung, KY, Chu, K, Park, SH, Lee, SY, Lee, SK. Localization value of seizure semiology analyzed by the conditional inference tree method. Epilepsy Res 2015;115:81–7. DOI: https://doi.org/10.1016/j.eplepsyres.2015.05.012.Search in Google Scholar PubMed

28. Person, C, Koessler, L, Louis-Dorr, V, Wolf, D, Maillard, L, Marie, PY. Analysis of the relationship between interictal electrical source imaging and PET hypometabolism. In: Annual international conference of the IEEE engineering in medicine and biology. Buenos Aires; 2010;3723–6.10.1109/IEMBS.2010.5627512Search in Google Scholar PubMed

29. Rikir, E, Koessler, L, Gavaret, M, Bartolomei, F, Colnat-Coulbois, S, Vignal, JP, et al. Electrical source imaging in cortical malformation-related epilepsy: a prospective EEG-SEEG concordance study. Epilepsia 2014;55:918–32. DOI: https://doi.org/10.1111/epi.12591.Search in Google Scholar PubMed

30. Brodbeck, V, Spinelli, L, Lascano, AM, Pollo, C, Schaller, K, Vargas, MI, et al. Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 2010;51:583–91. DOI: https://doi.org/10.1111/j.1528-1167.2010.02521.x.Search in Google Scholar PubMed

31. Brodbeck, V, Spinelli, L, Lascano, AM, Wissmeier, M, Vargas, MI, Vulliemoz, S, et al. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 2011;134:2887–97. DOI: https://doi.org/10.1093/brain/awr243.Search in Google Scholar PubMed PubMed Central

32. Tamilia, E, AlHilani, M, Tanaka, N, Tsuboyama, M, Peters, JM, Grant, PE, et al. Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clin Neurophysiol 2019;130:491–504. DOI: https://doi.org/10.1016/j.clinph.2019.01.009.Search in Google Scholar

33. Lantz, G, Ryding, E, Rosén, I. Three-dimensional localization of interictal epileptiform activity with dipole analysis: comparison with intracranial recordings and SPECT findings. J Epilepsy 1994;7:117–29. DOI: https://doi.org/10.1016/0896-6974(94)90009-4.Search in Google Scholar

34. Ashfak Habib, M, Ibrahim, F, Mohktar, MS, Bahyah Kamaruzzaman, S, Seang Lim, K. Recursive independent component analysis-decomposition of ictal EEG to select the best ictal component for EEG source imaging. Clin Neurophysiol 2020;131:642–54. https://doi.org/10.1016/j.clinph.2019.11.058.Search in Google Scholar

35. Kaiboriboon, K, Luders, HO, Hamaneh, M, Turnbull, J, Lhatoo, SD. EEG source imaging in epilepsy—practicalities and pitfalls. Nat Rev Neurol 2012;8:498–507. DOI: https://doi.org/10.1038/nrneurol.2012.150.Search in Google Scholar

36. Mouthaan, BE, Rados, M, Barsi, P, Boon, P, Carmichael, DW, Carrette, E, et al. Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe. Epilepsia 2016;57:770–6. DOI: https://doi.org/10.1111/epi.13347.Search in Google Scholar

37. Seeck, M, Koessler, L, Bast, T, Leijten, F, Michel, C, Baumgartner, C, et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol 2017;128:2070–7. DOI: https://doi.org/10.1016/j.clinph.2017.06.254.Search in Google Scholar

38. Kargiotis, O, Lascano, AM, Garibotto, V, Spinelli, L, Genetti, M, Wissmeyer, M, et al. Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis. Epilepsy Res 2014;108:267–79. DOI: https://doi.org/10.1016/j.eplepsyres.2013.11.003.Search in Google Scholar

39. Henderson, CJ, Butler, SR, Glass, A. The localization of equivalent dipoles of EEG sources by the application of electrical field theory. Electroencephalogr Clin Neurophysiol 1975;39:117–30. DOI: https://doi.org/10.1016/0013-4694(75)90002-4.Search in Google Scholar

40. Michel, CM, Brunet, D. EEG Source Imaging: a practical review of the analysis steps. Front Neurol 2019;10:325. https://doi.org/10.3389/fneur.2019.00325.Search in Google Scholar PubMed PubMed Central

41. Palleria, C, Coppola, A, Citraro, R, Del Gaudio, L, Striano, S, De Sarro, G, et al. Perspectives on treatment options for mesial temporal lobe epilepsy with hippocampal sclerosis. Expert Opin Pharmacother 2015;16:2355–71. https://doi.org/10.1517/14656566.2015.1084504.Search in Google Scholar PubMed

42. Michel, CM, Lantz, G, Spinelli, L, de Peralta, RG, Landis, T, Seeck, M. 128-Channel EEG Source Imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 2004;21:71–83.10.1097/00004691-200403000-00001Search in Google Scholar PubMed

43. Park, CJ, Seo, JH, Kim, D, Abibullaev, B, Kwon, H, Lee, YH, et al. EEG Source Imaging in partial epilepsy in comparison with presurgical evaluation and magnetoencephalography. J Clin Neurol 2015;11:319–30. https://doi.org/10.3988/jcn.2015.11.4.319.Search in Google Scholar PubMed PubMed Central

44. Gramfort, A, Papadopoulo, T, Olivi, E, Clerc, M. Open MEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 2010;9:45. https://doi.org/10.1186/1475-925X-9-45.Search in Google Scholar PubMed PubMed Central

45. Jarchi, D, Abolghasemi, V, Sanei, S, editors. Source localization of brain rhythms by empirical mode decomposition and spatial notch filtering. 2009 17th European signal processing conference. Glasgow: IEEE; 2009:627–631 pp.Search in Google Scholar

46. Mosher, JC, Leahy, RM. Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 1999;47:332–40. https://doi.org/10.1109/78.740118.Search in Google Scholar

47. Gracia, LP. Electroencephalogram source localization based on dipole modelling and particle swarm optimization [dissertation on the internet]. Göteborg, Sweden: Chalmers University of Technology; 2007.Search in Google Scholar

48. Xu, XL, Xu, B, He, B. An alternative subspace approach to EEG dipole source localization. Phys Med Biol 2004;49:327–43. DOI: https://doi.org/10.1088/0031-9155/49/2/010.Search in Google Scholar PubMed

49. Birot, G, Spinelli, L, Vulliémoz, S, Mégevand, P, Brunet, D, Seeck, M, et al. Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin 2014;5:77–83. DOI: https://doi.org/10.1016/j.nicl.2014.06.005.Search in Google Scholar PubMed PubMed Central

50. Cabrerizo, M, Goryawala, M, Jayakar, P, Barreto, A, Khizroev, S, Adjouadi, M. Accurate 3D source localization of focal epileptic foci using interictal EEG spikes. In: IEEE signal processing in medicine and biology symposium (SPMB). New York, NY; 2011:1–6 pp.10.1109/SPMB.2011.6120106Search in Google Scholar

51. Fuchs, M, Drenckhahn, R, Wischmann, HA, Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 1998;45:980–97. https://doi.org/10.1109/10.704867.Search in Google Scholar PubMed

52. Jatoi, MA, Kamel, N, Faye, I, Malik, AS, Bornot, JM, Begum, T, editors. BEM based solution of forward problem for brain source estimation. In: IEEE international conference on signal and image processing applications (ICSIPA). Kuala Lumpur; 2015:180–5 pp.10.1109/ICSIPA.2015.7412186Search in Google Scholar

53. Stenroos, M, Hauk, O. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error. Neuroimage 2013;81:265–72. DOI: https://doi.org/10.1016/j.neuroimage.2013.04.086.Search in Google Scholar PubMed PubMed Central

54. Zhukov, L, Weinstein, D, Johnson, C. Independent component analysis for EEG source localization. IEEE Eng Med Biol 2000;19:87–96. DOI: https://doi.org/10.1109/51.844386.Search in Google Scholar

55. Saleheen, HI, Ng, KT. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems. IEEE Trans Biomed Eng 1997;44:800–9. DOI: https://doi.org/10.1109/10.623049.Search in Google Scholar

56. Grova, C, Daunizeau, J, Kobayashi, E, Bagshaw, AP, Lina, JM, Dubeau, F, et al. Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage 2008;39:755–74. DOI: https://doi.org/10.1016/j.neuroimage.2007.08.020.Search in Google Scholar

57. Michel, CM, Murray, MM, Lantz, G, Gonzalez, S, Spinelli, L, Grave de Peralta, R. EEG source imaging. Clin Neurophysiol 2004;115:2195–222. DOI: https://doi.org/10.1016/j.clinph.2004.06.001.Search in Google Scholar

58. Castaño-Candamil, S, Höhne, J, Martínez-Vargas, J-D, An, X-W, Castellanos-Domínguez, G, Haufe, S. Solving the EEG inverse problem based on space–time–frequency structured sparsity constraints. Neuroimage 2015;118:598–612. DOI: https://doi.org/10.1016/j.neuroimage.2015.05.052.Search in Google Scholar

59. Ebinger, B. Particle filtering for EEG source localization and constrained state spaces [dissertation]. New Jersey: Henry M. Rowan College of Engineering; 2015:1–70 pp.Search in Google Scholar

60. Miltner, W, Braun, C, Johnson, RJr., Simpson, GV, Ruchkin, DS. A test of brain electrical source analysis (BESA): a simulation study. Electroencephalogr Clin Neurophysiol 1994;91:295–310. DOI: https://doi.org/10.1016/0013-4694(94)90193-7.Search in Google Scholar

61. Khosropanah, P, Ramli, AR, Lim, KS, Marhaban, MH, Ahmedov, A. Fused multivariate empirical mode decomposition (MEMD) and inverse solution method for EEG source localization. Biomed Tech 2018;63:467–79. DOI: https://doi.org/10.1515/bmt-2017-0011.Search in Google Scholar PubMed

62. Lei, D, Bin, H. Spatio-temporal EEG source localization using a three-dimensional subspace FINE approach in a realistic geometry inhomogeneous head model. IEEE Trans Biomed Eng 2006;53:1732–9.10.1109/TBME.2006.878118Search in Google Scholar PubMed PubMed Central

63. Zwoliński, P, Roszkowski, M, Żygierewicz, J, Haufe, S, Nolte, G, Durka, PJ. Open database of epileptic EEG with MRI and postoperational assessment of foci—a real world verification for the EEG inverse solutions. Neuroinformatics 2010;8:285–99. https://doi.org/10.1007/s12021-010-9086-6.Search in Google Scholar PubMed PubMed Central

64. Pascual-Marqui, RD, Esslen, M, Kochi, K, Lehmann, D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 2002;24:91–5.Search in Google Scholar

65. SaeidiAsl, L, Ahmad, T. Evaluation of different EEG source localization methods using testing localization errors. Jurnal Teknol 2013;62:15–20. DOI: https://doi.org/10.11113/jt.v62.1883.Search in Google Scholar

66. Hämäläinen, M, Hari, R, Ilmoniemi, RJ, Knuutila, J, Lounasmaa, OV. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993;65:413–97. DOI: https://doi.org/10.1103/RevModPhys.65.413.Search in Google Scholar

67. Oostenveld, R, Fries, P, Maris, E, Schoffelen, J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intel Neurosc 2011;2011:9. DOI: https://doi.org/10.1155/2011/156869.Search in Google Scholar PubMed PubMed Central

68. Brunet, D, Murray, MM, Michel, CM. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intel Neurosc 2011;2011:15. DOI: https://doi.org/10.1155/2011/813870.Search in Google Scholar PubMed PubMed Central

69. Tadel, F, Baillet, S, Mosher, JC, Pantazis, D, Leahy, RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intel Neurosc 2011;15. 2011;2011:13. DOI: https://doi.org/10.1155/2011/879716.Search in Google Scholar PubMed PubMed Central

70. Gramfort, A, Luessi, M, Larson, E, Engemann, DA, Strohmeier, D, Brodbeck, C, et al. MNE software for processing MEG and EEG data. Neuroimage 2014;86:446–60. DOI: https://doi.org/10.1016/j.neuroimage.2013.10.027.Search in Google Scholar PubMed PubMed Central

71. Esch, L, Sun, L, Klüber, V, Lew, S, Baumgarten, D, Grant, PE, et al. MNE Scan: software for real-time processing of electrophysiological data. J Neurosci Methods 2018;303:55–67. DOI: https://doi.org/10.1016/j.jneumeth.2018.03.020.Search in Google Scholar PubMed PubMed Central

72. Gramfort, A, Luessi, M, Larson, E, Engemann, D, Strohmeier, D, Brodbeck, C, et al. MEG and EEG data analysis with MNE-Python. Front Neurosci 2013;7:267. https://doi.org/10.3389/fnins.2013.00267.Search in Google Scholar PubMed PubMed Central

73. Litvak, V, Mattout, J, Kiebel, S, Phillips, C, Henson, R, Kilner, J, et al. EEG and MEG data analysis in SPM8. Comput Intell Neurosci 2011;2011. https://doi.org/10.1155/2011/852961.Search in Google Scholar PubMed PubMed Central

74. van Mierlo, P, Strobbe, G, Keereman, V, Birot, G, Gadeyne, S, Gschwind, M, et al. Automated long-term EEG analysis to localize the epileptogenic zone. Epilepsia Open 2017;2:322–33. DOI: https://doi.org/10.1002/epi4.12066.Search in Google Scholar PubMed PubMed Central

Received: 2019-05-29
Accepted: 2020-02-21
Published Online: 2020-07-05
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2019-0128/html
Scroll to top button