Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2020

Solutions to the affine quasi-Einstein equation for homogeneous surfaces

  • M. Brozos-Vázquez EMAIL logo , E. García-Río , P. Gilkey and X. Valle-Regueiro
From the journal Advances in Geometry

Abstract

We examine the space of solutions to the affine quasi–Einstein equation in the context of homogeneous surfaces. As these spaces can be used to create gradient Yamabe solitons, conformally Einstein metrics, and warped product Einstein manifolds using the modified Riemannian extension, we provide very explicit descriptions of these solution spaces. We use the dimension of the space of affine Killing vector fields to structure our discussion as this provides a convenient organizational framework.

MSC 2010: 53C21; 53B30; 53C24; 53C44
  1. Communicated by: P. Eberlein

  2. Funding: Supported by projects MTM2016-75897-P and ED431C 2019/10 with FEDER Funds (Spain).

References

[1] Z. Afifi, Riemann extensions of affine connected spaces. Quart. J. Math., Oxford Ser. (2) 5 (1954), 312–320. MR0068886 Zbl 0057.1400210.1093/qmath/5.1.312Search in Google Scholar

[2] T. Arias-Marco, O. Kowalski, Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18. MR2366132 Zbl 1155.5300910.1007/s00605-007-0494-0Search in Google Scholar

[3] M. Brozos-Vázquez, E. Calviño Louzao, E. García-Río, R. Vázquez-Lorenzo, Local structure of self-dual grad ient Yamabe solitons. In: Geometry, algebra and applications: from mechanics to cryptography, volume 161 of Springer Proc. Math. Stat., 25–35, Springer 2016. MR3534660 Zbl 1372.5307010.1007/978-3-319-32085-4_3Search in Google Scholar

[4] M. Brozos-Vázquez, E. García-Río, P. Gilkey, Homogeneous affine surfaces: moduli spaces. J. Math. Anal. Appl. 444 (2016), 1155–1184. MR3535753 Zbl 1345.5301510.1016/j.jmaa.2016.07.005Search in Google Scholar

[5] M. Brozos-Vázquez, E. García-Río, P. Gilkey, X. Valle-Regueiro, The affine quasi-Einstein equation for homogeneous surfaces. Manuscripta Math. 157 (2018), 279–294. MR3845767 Zbl 1409.5303710.1007/s00229-017-0987-7Search in Google Scholar

[6] M. Brozos-Vázquez, E. García-Río, P. Gilkey, X. Valle-Regueiro, Half conformally flat generalized quasi-Einstein manifolds of metric signature (2, 2). Internat. J. Math. 29 (2018), 1850002, 25 pages. MR3756414 Zbl 1395.5304010.1142/S0129167X18500027Search in Google Scholar

[7] M. Brozos-Vázquez, E. García-Río, P. Gilkey, X. Valle-Regueiro, A natural linear equation in affine geometry: the affine quasi-Einstein equation. Proc. Amer. Math. Soc. 146 (2018), 3485–3497. MR3803673 Zbl 1392.5305610.1090/proc/14090Search in Google Scholar

[8] M. Brozos-Vázquez, E. García-Río, P. Gilkey, Homogeneous affine surfaces: affine Killing vector fields and gradient Ricci solitons. J. Math. Soc. Japan70 (2018), 25–70. MR3750267 Zbl 1394.5302110.2969/jmsj/07017479Search in Google Scholar

[9] E. Calviño Louzao, E. García-Río, P. Gilkey, I. Gutiérrez-Rodríguez, R. Vázquez-Lorenzo, Affine surfaces which are Kähler, para-Kähler, or nilpotent Kähler. Results Math. 73 (2018), Art. 135, 24 pages. MR3859439 Zbl 1400.5302910.1007/s00025-018-0895-5Search in Google Scholar

[10] J. Case, Y.-J. Shu, G. Wei, Rigidity of quasi-Einstein metrics. Differential Geom. Appl. 29 (2011), 93–100. MR2784291 Zbl 1215.5303310.1016/j.difgeo.2010.11.003Search in Google Scholar

[11] D. D’Ascanio, P. Gilkey, P. Pisani, Geodesic completeness for type 𝓐 surfaces. Differential Geom. Appl. 54 (2017), 31–43. MR3693910 Zbl 1378.5304810.1016/j.difgeo.2016.12.008Search in Google Scholar

[12] D. D’Ascanio, P. Gilkey, P. Pisani, The geometry of locally symmetric affine surfaces. Vietnam J. Math. 47 (2019), 5–21. MR3913848 Zbl 0705560410.1007/s10013-018-0280-4Search in Google Scholar

[13] L. P. Eisenhart, Non-Riemannian geometry, volume 8 of American Mathematical Society Colloquium Publications. Amer. Math. Soc. 1990. MR1466961 Zbl 0105.1570110.1090/coll/008Search in Google Scholar

[14] S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry. Springer 1990. MR1083149 Zbl 0716.5300110.1007/978-3-642-97242-3Search in Google Scholar

[15] P. Gilkey, X. Valle-Regueiro, Applications of PDEs to the study of affine surface geometry. Mat. Vesnik71 (2019), 45–62. MR3895907Search in Google Scholar

[16] P. Gilkey, J. H. Park, X. Valle-Regueiro, Affine Killing complete and geodesically complete homogeneous affine surfaces. J. Math. Anal. Appl. 474 (2019), 179–193. MR3912897 Zbl 0705649010.1016/j.jmaa.2019.01.038Search in Google Scholar

[17] M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold. Tokyo J. Math. 6 (1983), 143–151. MR707845 Zbl 0534.5303710.3836/tjm/1270214332Search in Google Scholar

[18] D.-S. Kim, Y. H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc. 131 (2003), 2573–2576. MR1974657 Zbl 1029.5302710.1090/S0002-9939-03-06878-3Search in Google Scholar

[19] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. I, II. Wiley-Interscience 1996. MR1393940 Zbl 0119.37502, MR1393941 Zbl 0175.48504Search in Google Scholar

[20] Y. Matsushita, Walker 4-manifolds with proper almost complex structures. J. Geom. Phys. 55 (2005), 385–398. MR2162417 Zbl 1082.5307310.1016/j.geomphys.2004.12.014Search in Google Scholar

[21] K. Nomizu, T. Sasaki, Affine differential geometry, volume 111 of Cambridge Tracts in Mathematics. Cambridge Univ. Press 1994. MR1311248 Zbl 0834.53002Search in Google Scholar

[22] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan14 (1962), 333–340. MR0142086 Zbl 0115.3930210.2969/jmsj/01430333Search in Google Scholar

[23] B. Opozda, A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geom. Appl. 21 (2004), 173–198. MR2073824 Zbl 1063.5302410.1016/j.difgeo.2004.03.005Search in Google Scholar

[24] C. Steglich, Invariants of conformal and projective structures. Results Math. 27 (1995), 188–193. MR1317835 Zbl 0838.5301710.1007/BF03322280Search in Google Scholar

Received: 2018-02-22
Published Online: 2020-07-05
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2020-0011/html
Scroll to top button