Skip to main content
Log in

Microheterogeneity and Solidification Conditions of an Mg61Cu28Cd11 Alloy

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Original experimental data on the kinematic viscosity of the liquid Mg61Cu28Cd11 alloy during its heating from 340 to 780°C and subsequent cooling are reported. The measurement results are discussed in terms of the knowledge about the microheterogeneity of metallic melts. The results of the viscosimetric study are used to determine temperature T* at which the microheterogeneity of the liquid Mg61Cu28Cd11 alloy is destroyed (T* = 750°C). The anomalous behavior of the temperature dependences of the kinematic viscosity is found: as the temperature increases, a monotonic increase in the viscosity takes place. The quasi-gaseous behavior of the melt is described in terms of the foundations of physical chemistry using the concept of molar viscosity. The microstructure of samples solidified at a rate of 1°C/s is studied. Scanning electron microscopy images are taken and energy-dispersive spectroscopy is performed; the nanohardness H (GPA) and Young’s modulus E (GPa) of the Mg2CuCd and Mg2Cu phases are measured. The results of metallographic study indicate the formation of an unmodified dendritic structure of an Mg61Cu28Cd11 ingot. Heating of the liquid Mg61Cu28Cd11 alloy to 780°C does not result in complete destruction of the microheterogeneity, and this method is unsuitable for the preparation of bulk amorphous alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Q. Zheng, S. Cheng, J. H. Strader, E. Ma, and J. Xu, “Critical size and strength of the best bulk metallic glass former in the Mg–Cu–Cd ternary system,” Scr. Mater. 56 (2), 161–164 (2007).

    Article  CAS  Google Scholar 

  2. Y. D. Sun, P. Shen, Z. Q. Li, J. S. Liu, M. Q. Cong, and M. Jiang, “Kinetics of crystallization process of Mg–Cu–Cd based bulk metallic glasses,” J. Non-Cryst. Solids 358 (8), 1120–1127 (2012).

    Article  CAS  Google Scholar 

  3. N. Men and D. H. Kim, “Fabrication of ternary Mg–Cu–Cd bulk metallic glass with high glass-forming ability under air atmosphere,” J. Mater. Res. 18 (7), 1502–1504 (2003).

    Article  CAS  Google Scholar 

  4. S. V. Khonik, N. P. Kobelev, V. V. Sviridov, and V. A. Khonik, “Recovery of relaxation of the electrical resistivity and viscoelasticity of the bulk Pd40Cu30Ni10P20 metallic glass,” Fiz. Tverd. Tela 50 (10), 1741–1747 (2008).

    Google Scholar 

  5. P. S. Popel, O. A. Chikova, and V. M. Matveev, “Metastable colloidal states of liquid metallic solutions,” High Temp. Mater. Proc. 14 (4), 219–233 (1995).

    Article  CAS  Google Scholar 

  6. O. A. Chikova, “On structural transitions in liquid metals and alloys,” Rasplavy, No. 1, 18–30 (2009).

    Google Scholar 

  7. F. Q. Zu, “Temperature induced liquid–liquid transition in metallic melts: A brief review on the physical phenomenon,” Metals 5 (1), 395–417 (2015).

    Article  CAS  Google Scholar 

  8. J. J. Z. Li, W. K. Rhim, C. P. Kim, K. Samwer, and W. L. Johnson, “Evidence for a liquid–liquid phase transition in metallic fluids observed by electrostatic levitation,” Acta Mater. 59, 2166–2171 (2011).

    Article  CAS  Google Scholar 

  9. C. Wang, L. Hu, C. Wei, X. Tong, C. Zhou, Q. Sun, X. Hui, and Y. Yue, “Sub-Tg relaxation patterns in Cu-based metallic glasses far from equilibrium,” J. Chem. Phys. 141, 164507 (2014).

    Article  Google Scholar 

  10. C. Zhou, L. Hu, Q. Sun, J. Qin, X. Bian, Y. Yue, “Indication of liquid–liquid phase transition in CuZr-based melts,” Appl. Phys. Lett. 103, 171904 (2013).

    Article  Google Scholar 

  11. V. Konashkov, V. Vyukhin, and V. Tsepelev, “Viscosity and density of Co–B liquid fusions,” Key Eng. Mater. 705, 209–213 (2016).

    Article  Google Scholar 

  12. V. Tsepelev, Y. Starodubtsev, and V. Konashkov, “Melt viscosity of the soft magnetic nanocrystalline Fe72.5Cu1Nb2Mo1.5Si14B9 alloy,” EPJ Web of Conferences 151, 04006 (2017).

  13. G. V. Tyagunov, V. S. Tsepelev, M. N. Kushnir, and G. N. Yakovlev, “Installation for measuring the kinematic viscosity of metallic melts,” Zavod. Lab., No. 10, 919–920 (1980).

  14. State Standard GOST R 8.748–2011. GSI. Metals and Alloys. Measurement of Hardness and Other Characteristics of Materials upon Instrumental Indentation. Part 1. Testing Procedure (Standartinfrom, Moscow, 2013).

  15. Nanohardness Testers NanoSkan-4D. Specification. TU 4271-049-48786949–2014. NUMK.421452.002 TU.

  16. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res. 7 (6), 1564–1583 (1992).

    Article  CAS  Google Scholar 

  17. K. V. Gogolinskii, N. A. L’vova, and A. S. Useinov, “Application of scanning probe microscopes and nanotesters for the study of mechanical properties of solid materials at the nanolevel,” Zavod. Lab. Diagnostika Mater. 73 (6), 28–36 (2007).

    Google Scholar 

  18. B. M. Levinskikh, A. A. Belousov, S. G. Bakhvalov, et al., Transport Properties of Metallic and Slag Melts (Metallurgiya, Moscow, 1995).

    Google Scholar 

  19. E. Yu. Tyunina, “Molar viscosity of liquid metals in a range of 300–4000 K,” Zh. Fiz. Khim. 88 (4), 557–563 (2014).

    Google Scholar 

  20. R. Berd, V. Stewart, and E. Lighroot, Transport Phenomena (Khimiya, Moscow, 1974).

    Google Scholar 

  21. J. H. Hildebrand, Viscosity and Diffusivity (Wiley, New York, 1977).

    Google Scholar 

  22. L. Cheng, G. Chen, W. Zhao, Z. Z. Wang, and Z. W. Zhang, “Correlation of the glass formation and phase selection of the Mg–Cu–Cd bulk metallic glass forming alloys,” J. Non-Cryst. Solids 472, 61–64 (2017).

    Article  CAS  Google Scholar 

  23. O. A. Chikova, P. L. Reznik and B. V. Ovsyannikov, “Structure and nanomechanical characteristics of Al–Cu–Mg–Si alloy with partly liquated grain boundaries upon heat treatment,” Phys. Met. Metallogr. 117 (12), 1245–1250 (2016).

    Article  CAS  Google Scholar 

  24. O. A. Chikova, E. V. Shishkina, A. N. Petrova, and I. G. Brodova, “Measuring the nanohardness of commercial submicrocrystalline aluminum alloys produced by dynamic pressing,” Phys. Met. Metallogr. 115 (5), 523–528 (2014).

    Article  Google Scholar 

  25. Yu. I. Golovin, “Nanoindentation and mechanical properties of materials in nanoscale (review),” Fiz. Tverd. Tela 50 (12), 2113–2142 (2008).

    Google Scholar 

  26. S. A. Firstov, V. F. Gorban’, and E. P. Pechkovskii, “Measurement of ultimate value of hardness, elastic strain and stress of materials by an automatic indentation method,” Materialoved., No. 8, 15–21 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Chikova.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikova, O.A., Barashev, A.R., Tkachuk, G.A. et al. Microheterogeneity and Solidification Conditions of an Mg61Cu28Cd11 Alloy. Russ. Metall. 2020, 731–737 (2020). https://doi.org/10.1134/S0036029520070046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520070046

Keywords:

Navigation