Skip to main content
Log in

The theory of direct laser excitation of nuclear transitions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

This article has been updated

Abstract

A comprehensive theoretical study of direct laser excitation of a nuclear state based on the density matrix formalism is presented. The nuclear clock isomer \(^{229\text {m}}\)Th is discussed in detail, as it could allow for direct laser excitation using existing technology and provides the motivation for this work. The optical Bloch equations are derived for the simplest case of a pure nuclear two-level system and for the more complex cases taking into account the presence of magnetic sub-states, hyperfine-structure and Zeeman splitting in external fields. Nuclear level splitting for free atoms and ions as well as for nuclei in a solid-state environment is discussed individually. Based on the obtained equations, nuclear population transfer in the low-saturation limit is reviewed. Further, nuclear Rabi oscillations, power broadening and nuclear two-photon excitation are considered. Finally, the theory is applied to the special cases of \(^{229\text {m}}\)Th and \(^{235\text {m}}\)U, being the nuclear excited states of lowest known excitation energies. The paper aims to be a didactic review with many calculations given explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has no associated data.]

Change history

  • 16 September 2021

    The article was originally published without Open Access. With the author(s)’ decision to opt for Open Choice the copyright of the article had changed on 11 May 2021 to \copyright The Author(s) 2020 and the article had been forthwith distributed under a Creative Commons Attribution. Later with the author’s/authors’ decision to cancel Open Access the copyright of the article returned on 25 August 2021 to \copyright Societ\‘a Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020 with all rights reserved.

Notes

  1. To obtain Torrey’s solution in the form of Eq. (43), \(\rho _{ee}=1/2(1-w)\) was used with w taken from Eq. (16) of Ref. [81].

  2. The excitation rate \(\varGamma _\text {exc}\) is connected to the absorption cross section \(\sigma \) via [78] \(\varGamma _\text {exc}=\sigma I_\ell /(\hbar \omega _0)\). Therefore one has \(\sigma =\lambda _0^2/(2\pi )\cdot \varGamma _{ge}^\gamma /\varGamma _\ell \), with \(\lambda _0\) being the wavelength corresponding to the nuclear transition.

  3. With \(a=|J-I_g|\) and \(b=|J+I_g|\) one has:

    $$\begin{aligned}&\sum _{i=a}^{b}(2i+1) =(b-a+1)/2\left[ (2a+1)+(2b+1)\right] \nonumber \\&\quad =b^2-a^2+2b+1\nonumber \\&\quad =4JI_g+2(J+I_g)+1. \end{aligned}$$
    (84)
  4. For a Lorentzian spectral shape, the laser intensity \(I_\ell \) is related to the spectral energy density \(\rho ^\omega \) of the laser light at resonance via \(I_\ell =\frac{\pi c}{2}\rho ^\omega \varGamma _\ell \).

  5. The expansion coefficients used in Ref. [24] can be transformed to the density matrix formalism using the definitions \(\rho _{ee}=c_ec_e^*\), \(\rho _{gg}=c_gc_g^*\), as well as \(\rho _{ge}=c_gc_e^*\) and \(\rho _{eg}=c_ec_g^*\).

References

  1. E.V. Tkalya et al., Phys. Scr. 53, 296–299 (1996)

    Article  ADS  Google Scholar 

  2. E. Peik, C. Tamm, Eur. Phys. Lett. 61, 181–186 (2003)

    Article  ADS  Google Scholar 

  3. C.J. Campbell et al., Phys. Rev. Lett. 108, 120802 (2012)

    Article  ADS  Google Scholar 

  4. L.A. Rivlin, Quantum Electron. 37, 723 (2007)

    Article  ADS  Google Scholar 

  5. E.V. Tkalya, Phys. Rev. Lett. 106, 162501 (2011)

    Article  ADS  Google Scholar 

  6. J. Gunst et al., Sci. Rep. 6, 25136 (2016)

    Article  ADS  Google Scholar 

  7. T.J. Bürvenich et al., Phys. Rev. Lett. 96, 142501 (2006)

    Article  ADS  Google Scholar 

  8. S. Das et al., Phys. Rev. C 88, 024601 (2013)

    Article  ADS  Google Scholar 

  9. W.T. Liao, Coherent Control of Nuclei and X-Rays (Springer Theses, Berlin, 2014)

    Book  Google Scholar 

  10. W.F. McGrew et al., Nature 564, 87–90 (2018)

    Article  ADS  Google Scholar 

  11. S.M. Brewer et al., Phys. Rev. Lett. 123, 033201 (2019)

    Article  ADS  Google Scholar 

  12. P.G. Thirolf et al., Ann. Phys. (Berlin) (2019) 1800381

  13. T. Mehlstäubler et al., Rep. Prog. Phys. 81, 064401 (2018)

    Article  ADS  Google Scholar 

  14. V.V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006)

    Article  ADS  Google Scholar 

  15. A. Derevianko, M. Pospelov, Nat. Phys. 10, 933–936 (2014)

    Article  Google Scholar 

  16. E.V. Tkalya, Pis’ma Zh. Eksp. Teor. Fiz. 55 (1992) 216–218 (JETP Lett. 55, 211–214 (1992))

  17. E.V. Tkalya, Sov. J. Nucl. Phys. 55, 1611–1617 (1992)

    Google Scholar 

  18. P. Kálmän, T. Keszthelyi, Phys. Rev. C 49, 324–328 (1994)

    Article  ADS  Google Scholar 

  19. S. Typel, C. Leclercq-Willain, Phys. Rev. A 53, 2547–2561 (1996)

    Article  ADS  Google Scholar 

  20. S. Matinyan, Phys. Rep. 298, 199 (1998)

    Article  ADS  Google Scholar 

  21. F.F. Karpeshin, I.M. Band, M.B. Trzhaskovskaya, Nucl. Phys. A 654, 579–596 (1999)

    Article  ADS  Google Scholar 

  22. F.F. Karpeshin, Hyperfine Interact. 143, 79–96 (2002)

    Article  ADS  Google Scholar 

  23. S.G. Porsev et al., Phys. Rev. Lett 105, 182501 (2010)

    Article  ADS  Google Scholar 

  24. V.I. Romanenko et al., Ukr. J. Phys. 57, 1119–1131 (2012)

    Google Scholar 

  25. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Atom. Nucl. 78, 715–719 (2015)

    Article  ADS  Google Scholar 

  26. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 95, 034310 (2017)

    Article  ADS  Google Scholar 

  27. P.V. Bilous, Towards a nuclear clock with the\(^{229}\)Th isomeric transition (University of Heidelberg, Germany, 2018). Ph.D. Thesis

  28. A.V. Andreev et al., Phys. Rev. A 99, 013422 (2019)

    Article  ADS  Google Scholar 

  29. R.A. Müller, A.V. Volotka, A. Surzhykov, Phys. Rev. A 99, 042517 (2019)

    Article  ADS  Google Scholar 

  30. P. Borisyuk et al., Phys. Rev. C 100, 044306 (2019)

    Article  ADS  Google Scholar 

  31. P.V. Bilous et al., Phys. Rev. Lett. 124, 192502 (2020)

  32. B.S. Nickerson et al., Phys. Rev. Lett., preprint arXiv:2004.09992 (2020, accepted)

  33. C. Gohle et al., Nature 436, 234–237 (2005)

    Article  ADS  Google Scholar 

  34. A. Cingöz et al., Nature 482, 68–71 (2012)

    Article  ADS  Google Scholar 

  35. I. Pupeza et al., Nat. Photonics 7, 608–612 (2013)

    Article  ADS  Google Scholar 

  36. G. Porat et al., Nat. Photonics 12, 387–391 (2018)

    Article  ADS  Google Scholar 

  37. C. Zhang et al., arXiv:2003.02429 (2020)

  38. T. Saule et al., Nat. Commun. 10, 458 (2019)

    Article  ADS  Google Scholar 

  39. B.W.J. McNeil, N.R. Thompson, Nat. Photonics 4, 814–821 (2010)

    Article  ADS  Google Scholar 

  40. E. Allaria et al., Nat. Photonics 6, 699–704 (2012)

    Article  ADS  Google Scholar 

  41. S.M. Cavaletto et al., Nat. Photonics 8, 520–523 (2014)

    Article  ADS  Google Scholar 

  42. K. Ueda et al., X-Ray Free-Electron Laser (Applied Sciences, MDPI, 2018)

  43. A.I. Chumakov et al., Nat. Phys. 14, 261–264 (2018)

    Article  Google Scholar 

  44. R. Röhlsberger et al., Nature 482, 199–203 (2012)

    Article  ADS  Google Scholar 

  45. J. Haber et al., Nat. Photonics 10, 445–450 (2016)

    Article  ADS  Google Scholar 

  46. I. Ahmad et al., Phys. Rev. C 92, 024313 (2015)

    Article  ADS  Google Scholar 

  47. L.A. Kroger, C.W. Reich, Nucl. Phys. A 259, 29–60 (1976)

    Article  ADS  Google Scholar 

  48. C.W. Reich, R. Helmer, Phys. Rev. Lett. 64, 271–273 (1990)

    Article  ADS  Google Scholar 

  49. R. Helmer, C.W. Reich, Phys. Rev. C 49, 1845–1858 (1994)

    Article  ADS  Google Scholar 

  50. V.F. Strizhov, E.V. Tkalya, Sov. Phys. JETP 72, 387–390 (1991)

    Google Scholar 

  51. W.G. Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010)

    Article  ADS  Google Scholar 

  52. G.A. Kazakov et al., New J. Phys. 14, 083019 (2012)

    Article  ADS  Google Scholar 

  53. C.J. Campbell et al., Phys. Rev. Lett. 106, 223001 (2011)

    Article  ADS  Google Scholar 

  54. L. von der Wense et al., Meas. Tech. 60, 1178–1192 (2018)

    Article  Google Scholar 

  55. B.R. Beck et al., Phys. Rev. Lett. 98, 142501 (2007)

    Article  ADS  Google Scholar 

  56. B.R. Beck et al., LLNL-PROC-415170 (2009)

  57. J. Jeet et al., Phys. Rev. Lett. 114, 253001 (2015)

    Article  ADS  Google Scholar 

  58. A. Yamaguchi et al., New J. Phys. 17, 053053 (2015)

    Article  ADS  Google Scholar 

  59. L. von der Wense, On the direct detection of\(^{229\text{m}}\)Th (Springer Theses, Berlin, 2018)

  60. S. Stellmer et al., Phys. Rev. A 97, 062506 (2018)

    Article  ADS  Google Scholar 

  61. L. von der Wense et al., Nature 533, 47–51 (2016)

    Article  ADS  Google Scholar 

  62. B. Seiferle et al., Phys. Rev. Lett. 118, 042501 (2017)

    Article  ADS  Google Scholar 

  63. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev C 76, 054313 (2007)

    Article  ADS  Google Scholar 

  64. E.V. Tkalya et al., Phys. Rev. C 92, 054324 (2015)

    Article  ADS  Google Scholar 

  65. J. Thielking et al., Nature 556, 321–325 (2018)

    Article  ADS  Google Scholar 

  66. T. Masuda et al., Nature 573, 238–242 (2019)

    Article  ADS  Google Scholar 

  67. B. Seiferle et al., Nature 573, 243–246 (2019)

    Article  ADS  Google Scholar 

  68. L. von der Wense et al., Phys. Rev. Lett. 119, 132503 (2017)

    Article  ADS  Google Scholar 

  69. L. von der Wense et al., Hyperfine Interact. 240, 23 (2019)

    Article  ADS  Google Scholar 

  70. L. von der Wense, C. Zhang, arXiv:1905.08060 (2019)

  71. A. Pálffy et al., Phys. Rev. C 77, 044602 (2008)

    Article  ADS  Google Scholar 

  72. A. Pálffy, J. Mod. Opt. 55, 2603–2615 (2008)

    Article  ADS  Google Scholar 

  73. A.. Ya.. Dzyublik, Pris’ma v ZhETF 92, 152–156 (2010)

    Google Scholar 

  74. W.T. Liao et al., Phys. Lett. B 705, 134–138 (2011)

    Article  ADS  Google Scholar 

  75. W.T. Liao et al., Phys. Rev. C 87, 054609 (2013)

    Article  ADS  Google Scholar 

  76. G.A. Kazakov et al., Atomic clock with a nuclear transition: current status in TU Wien. Presented at the conference “Isomers in Nuclear and Interdisciplinary Research”, 4–10 July 2011, Sankt-Petersburg, Russia. arXiv:1110.0741v2 (2013)

  77. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  78. D.A. Steck, Quantum and Atom Optics, available online at http://steck.us/teaching (revision0.11.6, 24 February 2017)

  79. G. Lindblad, Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  Google Scholar 

  80. F. Riehle, Frequency Standards: Basics and Applications (WILEY-VCH Verlag GmbH Co, KGaA, Berlin, 2004)

    Google Scholar 

  81. H.R. Noh, W. Jhe, Opt. Commun. 283, 2353–2355 (2010)

    Article  ADS  Google Scholar 

  82. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, New York, 1980)

    Book  Google Scholar 

  83. H.C. Torrey, Phys. Rev. 76, 1059 (1949)

    Article  ADS  Google Scholar 

  84. A.D. Ludlow et al., Rev. Mod. Phys. 87, 637 (2015)

    Article  ADS  Google Scholar 

  85. B.W. Shore, Acta Phys. Slov. 58, 243–486 (2008)

    ADS  Google Scholar 

  86. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  87. H. Kopfermann, Nuclear Moments (Academic, New York, 1958)

    Google Scholar 

  88. N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy (Chapman and Hall Ltd, London, 1971)

    Book  Google Scholar 

  89. M.S. Safronova et al., Phys. Rev. A 88, 060501(R) (2013)

    Article  ADS  Google Scholar 

  90. A. Messiah, Quantum Mechanics, vol. II (North Holland Publishing Company, Amsterdam, 1965)

    MATH  Google Scholar 

  91. B.E. King, arXiv:0804.4528 (2008)

  92. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  93. P. Dessovic et al., J. Phys. Condens. Matter 26, 105402 (2014)

    Article  Google Scholar 

  94. B. Nickerson et al., Phys. Rev. A 98, 062520 (2018)

    Article  ADS  Google Scholar 

  95. S.G. Porsev, V.V. Flambaum, Phys. Rev. A 81, 032504 (2010)

    Article  ADS  Google Scholar 

  96. P. Bilous et al., Phys. Rev. C 97, 044320 (2018)

    Article  ADS  Google Scholar 

  97. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952), p. 627

    MATH  Google Scholar 

  98. E. Ruchowska et al., Phys. Rev. C 73, 044326 (2006)

    Article  ADS  Google Scholar 

  99. N. Minkov, A. Pálffy, Phys. Rev. Lett. 118, 212501 (2017)

    Article  ADS  Google Scholar 

  100. N. Minkov, A. Pálffy, Phys. Rev. Lett. 122, 162502 (2019)

    Article  ADS  Google Scholar 

  101. S. Köhler et al., Spectrochim. Acta B 52, 717 (1997)

    Article  ADS  Google Scholar 

  102. S. Raeder et al., J. Phys. B At. Mol. Opt. Phys. 44, 165005 (2011)

    Article  ADS  Google Scholar 

  103. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  104. C.J. Campbell et al., Phys. Rev. Lett. 102, 233004 (2009)

    Article  ADS  Google Scholar 

  105. T. Sleator, H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  106. F. Ponce et al., Phys. Rev. C 97, 054310 (2018)

    Article  ADS  Google Scholar 

  107. J.C. Berengut, Phys. Rev. Lett. 121, 253002 (2018)

    Article  ADS  Google Scholar 

  108. M.S. Freedman et al., Phys. Rev. 108, 836 (1957)

    Article  ADS  Google Scholar 

  109. I. Mazets, B. Matisov, Sov. Phys. JETP 74, 13 (1992)

    Google Scholar 

  110. B.J. Dalton, P.L. Knight, Opt. Commun. 42, 411 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with E. Peik, J. Thielking, T. Udem, J. Ye, C. Zhang, G. Porat, C.M. Heyl, S. Schoun and T. Schumm. L.v.d.W. wishes to thank the Humboldt foundation for financial support. This work was supported by DFG (Th956/3-2), by the Austrian Science Foundation (FWF) under Grant no. F41 (SFB “VICOM”), and by the European Union’s Horizon 2020 research and innovation programme under Grant agreement 664732 “nuClock”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars von der Wense.

Additional information

Communicated by Vittorio Somà

Appendices

Appendix A: Averaging over fluctuations of the laser field

The influence of phase fluctuations on the excitation of optical transitions has been studied in a number of works, e.g., in Refs. [109, 110]. Here the respective analysis for the particular case of \(\delta \)-correlated phase fluctuations is presented, described by the equations

$$\begin{aligned} \langle {{\dot{\phi }}}(t) \rangle = 0; \quad \langle {{\dot{\phi }}}(t) {{\dot{\phi }}}(t') \rangle = \varGamma _\ell \delta (t-t'). \end{aligned}$$
(132)

This \(\delta \)-correlated description takes account for the fact that the typical correlation times of phase fluctuations are significantly shorter than the typical evolution times of the system. The brackets denote the ensemble average and the correlation function defined as [80]

$$\begin{aligned} \langle b(t) \rangle = \text {lim}_{N\rightarrow \infty } \frac{1}{N} \sum _{i=1}^{N} b_i(t) \end{aligned}$$
(133)

and

$$\begin{aligned} \langle b(t)b(t') \rangle = \text {lim}_{N\rightarrow \infty } \frac{1}{N}\sum _{i=1}^{N} b_i(t)b_i(t'), \end{aligned}$$
(134)

respectively. Different indices i denote different systems in the ensemble. This correlation corresponds to a Lorentzian shape of the laser spectrum with \(\mathrm{FWHM}=\varGamma _\ell \), as will be shown in the following. First, an averaging of Eq. (21) over these fluctuations is performed. This set of equations is degenerate, but the degeneracy can be waived with the help of the normalization condition \(\sum _i \rho _{ii}=1\). It can be written in matrix form as

$$\begin{aligned} {\dot{{\bar{\rho }}}} = \left[ {\mathbb {M}}+ {\mathbb {N}}(t) \right] \cdot {\bar{\rho }}+ {\bar{S}}, \end{aligned}$$
(135)

where the column vector \({\bar{\rho }}\) consists of matrix elements of the density matrix \({\hat{\rho }}\), the matrix \({\mathbb {M}}\) is time-independent, \({\bar{S}}\) is a constant vector appearing due to the normalization condition, and \({\mathbb {N}}(t)\) is a fast fluctuating diagonal matrix proportional to \({\dot{\phi }}\), whose only non-zero elements are \(i{\dot{\phi }}\) (corresponding to elements \(\rho _{eg}\)), and \(- i{\dot{\phi }}\) (corresponding to \(\rho _{ge}\)):

$$\begin{aligned} {\mathbb {N}}(t)= {\dot{\phi }}(t) \, {\mathbb {N}}^0; \quad {\mathbb {N}}^0_{eg,eg}=i; \quad {\mathbb {N}}^0_{ge,ge}=-i\, . \end{aligned}$$
(136)

The solution of Eq. (135) can be represented as a sum of two terms, slowly and rapidly varying in time, as in [24]:

$$\begin{aligned} {\bar{\rho }}(t) = {\bar{\rho }}_0(t)+{\bar{\rho }}^\prime (t). \end{aligned}$$
(137)

The slow term \({\bar{\rho }}_0=\langle {\bar{\rho }}_0 \rangle \) varies with a characteristic time of order of the inverse eigenvalues of the matrix \({\mathbb {M}}\), and the fast term \({\bar{\rho }}'\) varies with a characteristic time of order of the correlation time of the noise terms. It is adopted that the average value of the rapidly oscillating terms vanishes over times much longer than the correlation time of the phase noise terms, but much shorter than the characteristic evolution time of the slow terms; the same is correct for the ensemble average, i.e., \(\langle {\bar{\rho }}' \rangle =0\), and \({\bar{\rho }}_0=\langle {\bar{\rho }}_0 \rangle \). Then Eq. (135) gives

$$\begin{aligned} {\dot{{\bar{\rho }}}}_0+\underline{{\dot{{\bar{\rho }}}}'} = {\mathbb {M}}\cdot \left[ {\bar{\rho }}_0+ \underline{{\bar{\rho }}'}\, \right] + \underline{{\mathbb {N}}(t) \left[ {\bar{\rho }}_0+ \underline{{\bar{\rho }}'}\, \right] } + {\bar{S}}. \end{aligned}$$
(138)

The underlined terms fluctuate rapidly, and vanish after having been averaged over the ensemble, as well as over the time longer than the correlation time of the phase noise. The twice underlined term consists of a product of rapidly fluctuating terms and may contain a slowly varying component. This allows to write

$$\begin{aligned} {\dot{{\bar{\rho }}}}_0(t) =&{\mathbb {M}}\cdot {\bar{\rho }}_0(t) + {\bar{S}}+ \langle {\mathbb {N}}(t) {\bar{\rho }}'(t) \rangle , \end{aligned}$$
(139)
$$\begin{aligned} {\dot{{\bar{\rho }}}}'(t) =&{\mathbb {M}}\cdot {\bar{\rho }}'(t) + {\mathbb {N}}(t) {\bar{\rho }}_0(t). \end{aligned}$$
(140)

The solution of Eq. (140) can be written as

$$\begin{aligned} \begin{aligned} {\bar{\rho }}'(t)&= \int \limits _{-\infty }^t e^{{\mathbb {M}}(t-t')} \cdot {\mathbb {N}}(t') \cdot {\bar{\rho }}_0(t') dt' \\&\approx \int \limits _{-\infty }^t e^{{\mathbb {M}}(t-t')} \cdot {\mathbb {N}}(t') dt' \cdot {\bar{\rho }}_0(t), \end{aligned} \end{aligned}$$
(141)

where it was used that \({\bar{\rho }}_0\) is a slow variable. Substituting this into Eq. (139) and using Eqs. (132) and (136), one obtains

$$\begin{aligned} \begin{aligned} {\dot{{\bar{\rho }}}}_0(t)&= \left[ {\mathbb {M}}+ \int \limits _{-\infty }^t \left\langle {\mathbb {N}}(t) \cdot e^{{\mathbb {M}}(t-t')} \cdot {\mathbb {N}}(t') \right\rangle dt' \right] \cdot {\bar{\rho }}_0(t) + {\bar{S}}\\&= \left[ {\mathbb {M}}+ \int \limits _{-\infty }^t \left\langle {\mathbb {N}}(t) \cdot {\mathbb {N}}(t') \right\rangle dt' \right] \cdot {\bar{\rho }}_0(t) + {\bar{S}}\\&= \left[ {\mathbb {M}}+ \frac{\varGamma _\ell }{2}{{\mathbb {N}}^0}^2 \right] \cdot {\bar{\rho }}_0(t) + {\bar{S}}, \\ \end{aligned} \end{aligned}$$
(142)

or

$$\begin{aligned} \langle {\dot{{\bar{\rho }}}}\rangle = \left[ {\mathbb {M}}+ \frac{\varGamma _\ell }{2}{{\mathbb {N}}^0}^2 \right] \cdot \langle {{\bar{\rho }}}\rangle + {\bar{S}}. \end{aligned}$$
(143)

It follows from the form of the matrix \({\mathbb {N}}^0\) [Eq. (136)] that averaging over the fluctuating laser phase leads to the appearance of additional relaxation terms \(\varGamma _\ell /2\) for the non-diagonal matrix elements \(\rho _{eg}\) and \(\rho _{ge}\).

To clarify the physical meaning of \(\varGamma _\ell \), the power spectral density \(S_E(f)\) of the field is calculated:

$$\begin{aligned} \begin{aligned} E(t)&=E_{0}\left( e^{-i(\omega _\ell t+\phi (t))}+ e^{i(\omega _\ell t+\phi (t))}\right) \\&=2E_{0} \cos (\omega _\ell t+\phi (t)). \end{aligned} \end{aligned}$$
(144)

According to the Wiener–Khinchin theorem [80], the power spectral density \(S_E(f)\) of the signal E(t) may be expressed through its autocorrelation function \(R_E(\tau )\) as

$$\begin{aligned} S_E(f)=&\int \limits _{-\infty }^{\infty } e^{-2 \pi i f \tau } R_{E}(\tau ) d \tau , \quad \mathrm{where}\end{aligned}$$
(145)
$$\begin{aligned} R_E(\tau )=&\langle E(t) E(t+\tau ) \rangle . \end{aligned}$$
(146)

Here \(f=2\pi \omega \) is the ordinary frequency. Suppose that the phase fluctuations are Gaussian, then, using the relation for Gaussian random phases

$$\begin{aligned} \langle \exp \left[ i(\phi (t)-\phi (t^\prime ))\right] \rangle = \exp \left[ -\frac{\langle (\phi (t)-\phi (t^\prime ))^2\rangle }{2}\right] ,\nonumber \\ \end{aligned}$$
(147)

after some algebra, the autocorrelation function \(R_E(\tau )\) can be expressed as

$$\begin{aligned} R_E(\tau )= 2 E_{0}^2 \exp \left[ -\frac{\varGamma _\ell |\tau |}{2}\right] \cos (\omega _\ell \tau ). \end{aligned}$$
(148)

Substituting Eq. (148) into Eq. (146), the power spectral density \(S_E(f)\) is obtained in the form:

$$\begin{aligned} S_E(f)= & {} 2 E_0^2 \left[ \frac{\varGamma _\ell /2}{ \left( \frac{\varGamma _\ell }{2}\right) ^2+\left( 2 \pi f + \omega _\ell \right) ^2} \right. \nonumber \\&\quad + \left. \frac{\varGamma _\ell /2}{ \left( \frac{\varGamma _\ell }{2}\right) ^2+\left( 2 \pi f - \omega _\ell \right) ^2} \right] . \end{aligned}$$
(149)

Therefore, the phase fluctuations given in Eq. (132) correspond to a Lorentzian spectrum, and \(\varGamma _\ell \) is the full linewidth at half maximum.

Appendix B: Derivation of the optical Bloch equations for a solid-state environment

As usual, for the derivation of the optical Bloch equations, the quantum optical master equation in Lindblad form, Eq. (1), is used as the starting point. For the considered case of the solid-state environment, the Lindblad superoperator \({\mathcal {L}}[{\hat{\rho }}]\) has a more complicated form, since it describes, besides the spontaneous decay of the excited level sub-states to the ground level sub-states, also various other relaxation processes due to interaction with the environment. It can be represented as

$$\begin{aligned} {\mathcal {L}}[{\hat{\rho }}]={\mathcal {L}}_\mathrm{sp}[{\hat{\rho }}]+{\mathcal {L}}_\mathrm{od}[{\hat{\rho }}]+{\mathcal {L}}_\text {mix,e}[{\hat{\rho }}] +{\mathcal {L}}_\text {mix,g}[{\hat{\rho }}]+{\mathcal {L}}_\mathrm{md}[{\hat{\rho }}], \nonumber \\ \end{aligned}$$
(150)

where \({\mathcal {L}}_\mathrm{sp}\) contains spontaneous decay of the excited states to the ground states and was already defined in Eq. (70). \({\mathcal {L}}_\mathrm{od}\) models the loss of coherence between excited and ground states due to some random process shifting the levels with respect to each other. In the considered example this is introduced by the laser light with bandwidth \(\varGamma _\ell \) and \({\mathcal {L}}_\mathrm{od}\) takes the form

$$\begin{aligned} {\mathcal {L}}_\mathrm{od}[{\hat{\rho }}]= & {} - \frac{\varGamma _\ell }{4} \left[ {\hat{\rho }}-\left( \sum _e {\hat{\sigma }}_{ee} - \sum _g {\hat{\sigma }}_{gg} \right) {\hat{\rho }}\left( \sum _e {\hat{\sigma }}_{ee} - \sum _g {\hat{\sigma }}_{gg} \right) \right] . \nonumber \\ \end{aligned}$$
(151)

\({\mathcal {L}}_\text {mix,e}[{\hat{\rho }}]\) and \({\mathcal {L}}_\text {mix,g}[{\hat{\rho }}]\), respectively, describe transitions between different magnetic sub-states due to non-controllable fluctuations of the local magnetic field created, e.g., by spin changes in the environment as well as variations of the local electric field gradient caused by thermal motion of the atoms in the solid-state environment. The population mixing between different sublevels of the ground (\(i,i'=g,g'\)) or excited (\(i,i'=e,e'\)) states is defined by the Lindblad operator

$$\begin{aligned} {\mathcal {L}}_\text {mix, i}[{\hat{\rho }}]=\sum _{i, i'}\gamma _{ii'}\left( {\hat{\sigma }}_{ii'}{\hat{\rho }}{\hat{\sigma }}^\dagger _{ii'}-\frac{1}{2}{\hat{\rho }}{\hat{\sigma }}^\dagger _{ii'}{\hat{\sigma }}_{ii'}-\frac{1}{2}{\hat{\sigma }}^\dagger _{ii'}{\hat{\sigma }}_{ii'}{\hat{\rho }}\right) , \nonumber \\ \end{aligned}$$
(152)

where \(\gamma _{gg'}\) and \(\gamma _{ee'}\) denote the decay rates between different sub-states of the same level. \({\mathcal {L}}_\mathrm{md}\) takes account for loss of coherence between different magnetic sub-states caused by the same reasons. This can be described by

$$\begin{aligned} \begin{aligned} {\mathcal {L}}_\mathrm{md}[{\hat{\rho }}]&=\sum _{g\ne g^\prime }\frac{{\tilde{\gamma }}_{gg'}}{2} \left[ ({\hat{\sigma }}_{gg}-{\hat{\sigma }}_{g'g'}){\hat{\rho }}({\hat{\sigma }}_{gg}-{\hat{\sigma }}_{g'g'}) \right. \\&\quad \left. - \frac{1}{2} \left\{ ({\hat{\sigma }}_{gg}+{\hat{\sigma }}_{g'g'}),{\hat{\rho }}\right\} \right] \\&\quad + \sum _{e\ne e^\prime }\frac{{\tilde{\gamma }}_{ee'}}{2} \left[ ({\hat{\sigma }}_{ee}-{\hat{\sigma }}_{e'e'}){\hat{\rho }}({\hat{\sigma }}_{ee}-{\hat{\sigma }}_{e'e'}) \right. \\&\quad \left. - \frac{1}{2} \left\{ ({\hat{\sigma }}_{ee}+{\hat{\sigma }}_{e'e'}),{\hat{\rho }}\right\} \right] , \end{aligned} \end{aligned}$$
(153)

where \({\tilde{\gamma }}_{gg'}\) and \({\tilde{\gamma }}_{ee'}\) denote the decoherence rates between different sub-states. The complete set of sub-state optical

Bloch equations in case of laser excitation in a solid-state environment is then obtained in the form [52, 76]

$$\begin{aligned} \begin{aligned} {\dot{\rho }}_{ee}&= -i \sum _{g} \frac{\varOmega _{eg}}{2} \Big [ \rho _{ge}-\rho _{eg}\Big ] - \sum _{g} \varGamma _{ge} \rho _{ee}\\&+ \sum _{e'} \gamma _{ee'} (\rho _{e'e'}-\rho _{ee}); \\ {\dot{\rho }}_{ge}&=-i\sum _{{e'}} \frac{\varOmega _{e'g}}{2} \rho _{e'e} +i\sum _{{g'}} \frac{\varOmega _{eg'}}{2} \rho _{gg'}\\&-\rho _{ge}(i\varDelta \omega _{eg}+{\tilde{\varGamma }}_{ge}); \\ {\dot{\rho }}_{gg}&= -i \sum _{e} \frac{\varOmega _{eg}}{2}\Big [\rho _{eg}-\rho _{ge}\Big ] + \sum _{e} \varGamma _{ge} \rho _{ee}\\&+ \sum _{g'} \gamma _{gg'} (\rho _{g'g'}-\rho _{gg}); \\ {\dot{\rho }}_{ee'}&= -i \sum _{g} \Big [ \frac{\varOmega _{eg}}{2} \rho _{ge'}- \frac{\varOmega _{e'g}}{2} \rho _{eg} \Big ]\\&- \rho _{ee'} (i \omega _{ee'} + {\tilde{\varGamma }}_{ee'}), \quad e \ne e'; \\ {\dot{\rho }}_{gg'}&= -i \sum _{e} \Big [ \frac{\varOmega _{eg}}{2} \rho _{eg'}- \frac{\varOmega _{eg'}}{2} \rho _{ge} \Big ]\\&-\rho _{gg'}(i \omega _{gg'} + {\tilde{\varGamma }}_{gg'}), \quad g \ne g'. \end{aligned} \end{aligned}$$
(154)

As previously, \(\omega _{ij}\) and \(\omega _{eg}\) were defined as \(\omega _{ij}=\omega _i-\omega _j\) and \(\varDelta \omega _{eg}=\omega _\ell -\omega _{eg}\). This time, the decay rates of the coherences are obtained in the form:

$$\begin{aligned} {\tilde{\varGamma }}_{ge}&=\sum _{g'}\frac{\varGamma _{g'e}+\gamma _{g'g}}{2} +\sum _{e'}\frac{\gamma _{e'e}}{2}+\frac{\varGamma _\ell }{2} \nonumber \\&\quad +\sum _{g''\ne g}\frac{{{\tilde{\gamma }}}_{g g''}+{{\tilde{\gamma }}}_{g'' g}}{4} +\sum _{e''\ne e}\frac{{{\tilde{\gamma }}}_{e e''}+{{\tilde{\gamma }}}_{e'' e}}{4},\nonumber \\ {\tilde{\varGamma }}_{ee'}&=\sum _{g} \frac{\varGamma _{ge}+\varGamma _{ge'}}{2} +\sum _{e''}\frac{\gamma _{e''e}+\gamma _{e''e'}}{2} \\&\quad +\frac{{{\tilde{\gamma }}}_{ee'}+{{\tilde{\gamma }}}_{e'e}}{2}+ \sum _{e''\ne e} {{\tilde{\gamma }}}_{ee''} +\sum _{e''\ne e'} {{\tilde{\gamma }}}_{e''e'},\nonumber \\ {\tilde{\varGamma }}_{gg'}&=\sum _{g''}\frac{\gamma _{g''g}+\gamma _{g''g'}}{2} +\frac{{{\tilde{\gamma }}}_{gg'}+{{\tilde{\gamma }}}_{g'g}}{2}\nonumber \\&\quad +\sum _{g''\ne g} {{\tilde{\gamma }}}_{gg''} +\sum _{g''\ne g'} {{\tilde{\gamma }}}_{g''g'}.\nonumber \end{aligned}$$
(155)

In the case that \(\varOmega _{eg}^2/{\tilde{\varGamma }}_{ge}\) is small compared to the energy differences \(\omega _{gg'}\) and \(\omega _{ee'}\), or in comparison with the decoherence rates \({\tilde{\varGamma }}_{ee'}\) and \({\tilde{\varGamma }}_{gg'}\), again it is possible to neglect the two-photon coherences \(\rho _{ee'}\) and \(\rho _{gg'}\) and Eq. (154) transforms to Eq. (85).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von der Wense, L., Bilous, P.V., Seiferle, B. et al. The theory of direct laser excitation of nuclear transitions. Eur. Phys. J. A 56, 176 (2020). https://doi.org/10.1140/epja/s10050-020-00177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00177-x

Navigation