Skip to main content
Log in

Simulation of the Creep Strain of Carbon-Based Cathode Material in the Aluminum Electrolysis

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Different stresses can occur in the carbon cathodes due to melting and penetration of sodium during aluminum electrolysis. Under high temperatures and elevated stress, carbon blocks experience primary creep, which can be extended to the secondary and tertiary creep stages. It is quite necessary to characterize the creep behavior of carbon cathodes. Therefore, uniaxial compressive creep testing devices have been used for measuring the creep strain of a semi-graphitic cathode material during aluminum electrolysis under various stress levels. The Graham creep equation is applied for the evaluation of the creep curves and the relationship between creep coefficient and stress is determined. The creep properties of carbon cathode are obtained via numerical simulation. The extracted model effectively supports the obtained experimental results. This work introduces a new insight into the development of cell design and quality control of carbon cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chauke, L. and Garbers-Craig, A.M., Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data, Carbon, 2013, vol. 58, pp. 40–45.

    Article  CAS  Google Scholar 

  2. Hjertenæs, E., Nguyen, A.Q., and Koch, H., A reactive reaxFF force field for sodium intrusion in graphitic cathodes, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 46, pp. 31431–31440.

    Article  Google Scholar 

  3. Wang, W., Chen, W., and Gu, W., Creep deformation of carbon-based cathode materials for low-temperature aluminum electrolysis, Metallurgist, 2017, vol. 61, nos. 7–8, pp. 717–725

    Article  CAS  Google Scholar 

  4. Wang, W., Sun, K., and Liu, H., Effects of different aluminum sources on morphologies and properties of ceramic floor tiles from red mud, Constr. Build. Mater., 2020, vol. 241, p. 118119. https://doi.org/10.1016/j.conbuildmat.2020.118119

    Article  CAS  Google Scholar 

  5. Picard, D., Fafard, M., and Soucy, G., Room temperature long-term creep/relaxation behavior of carbon cathode material, Mater. Sci. Eng., A, 2008, vol. 496, pp. 366–375.

    Article  Google Scholar 

  6. Zolochevsky, A., Hop, J.G., and Foosnæs, T., Rapoport-Samoilenko test for cathode carbon materials-II. Swelling with external pressure and effect of creep, Carbon, 2005, vol. 43. pp. 1222–1230.

    Article  CAS  Google Scholar 

  7. Lü, X.J., Xu, J., and Li, J., Thermal-treated pitches as binders for TiB2/C composite cathodes, Metall. Mater. Trans. A, 2012, vol. 43, pp. 219–227.

    Article  Google Scholar 

  8. Esposito, L. and Bonora, N., Primary creep modeling based on the dependence of the activation energy on the internal stress, J. Pressure Vessel Technol., 2012, vol. 134, pp. 061401–061406.

    Article  Google Scholar 

  9. Xue, L., Hong, X., and Zheng, S., Modification of Graham model and application in the simulation of creep processes, Mod. Electr. Power, 2006, vol. 23, pp. 57–60.

    Google Scholar 

  10. Hagihara, K., Okamoto, T., and Izuno, H., Plastic deformation behavior of 10H-type synchronized LPSO phase in a Mg–Zn–Y system, Acta Mater., 2016, vol. 109, pp. 90–102.

    Article  CAS  Google Scholar 

  11. Wang, F., Liu, Y., Zhao, Y., Wang, Y., Wang, Z., Zhang, W., and Ren, F., Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries, Appl. Sci., 2018, vol. 8, p. 22.

    Article  Google Scholar 

  12. Khorshidi, R., Mahmudi, R., and Honarbakhsh-Raouf, A., Compressive creep behavior of a cast Al–15Mg2Si in situ composite, Mater. Sci. Eng., A, 2016, vol. 668, pp. 112–119.

    Article  CAS  Google Scholar 

  13. Picard, D., Fafard, M., and Soucy, G.B., Three-dimensional constitutive creep/relaxation model of carbon cathode materials, J. Appl. Mech., 2008, vol. 75, pp. 519–525.

    Article  Google Scholar 

  14. Wen, J.F., Tu, S.T., and Gao, X.L., New model for creep damage analysis and its application to creep crack growth simulations, Mater. Sci. Technol., 2014, vol. 30, pp. 32–37.

    Article  CAS  Google Scholar 

  15. Zolochevsky, A., Hop, J.G., and Foosnæs, T., Rapoport-Samoilenko test for cathode carbon materials: I. Experimental results and constitutive modelling, Carbon, 2003, vol. 41, pp. 497–505.

    Article  CAS  Google Scholar 

  16. Wang, W., Chen, W., and Gu, W., High-resolution TEM microscopy study of the creep behavior of carbon-based cathode materials, Mater. Sci. Eng., A, 2017, vol. 687, pp. 107–112.

    Article  CAS  Google Scholar 

  17. Koerner, R.M., Soong, T.Y., and Koerner, G.R., Creep testing and data extrapolation of reinforced GCLs, Geotext. Geomembr., 2001, vol. 19, pp. 413–425.

    Article  Google Scholar 

  18. Allard, F., Désilets, M., and Blais, A., A modeling approach for time-dependent geometry applied to transient heat transfer of aluminum electrolysis cells, Metall. Mater. Trans. B, 2019, vol. 50, no. 2, pp. 958–980.

    Article  CAS  Google Scholar 

  19. Zhu, J., Xue, J.L., and Zhang, Y.N., Ambient electrical conductivity of carbon cathode materials for aluminum reduction cells, Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 3753–3759.

    Article  CAS  Google Scholar 

  20. Yan, H., Yang, J., and Li, W., Alumina solubility in KF–NaF–AlF3-based low-temperature electrolyte, Metall. Mater. Trans. B, 2011, vol. 42, pp. 1065–1070.

    Article  CAS  Google Scholar 

  21. Wang, W., Chen, W.J., and Liu, H.T., Ripplocations, kink bands and delamination cracks in carbon cathode materials, Carbon Lett., 2019, vol. 29, pp. 377–383.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support on this research from National Natural Science Foundation of China (no. U1704154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Kai Sun.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei Wang, Kai Sun Simulation of the Creep Strain of Carbon-Based Cathode Material in the Aluminum Electrolysis. Russ. J. Non-ferrous Metals 61, 241–247 (2020). https://doi.org/10.3103/S1067821220030189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220030189

Keywords:

Navigation