Skip to main content
Log in

Production of Cast Materials Based on the Cr2AlC MAX Phase by SHS Metallurgy Using Coupled Chemical Reactions

  • SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

It is known that materials based on MAX phases possess a large potential for use in aerospace, automobile, and industrial spheres because they have a unique combination of features of both metals and ceramics with high mechanical, chemical, thermal, and electrical properties. In this work, the experimental results of fabricating cast materials in the Cr–Al–C system with different ratios between the Cr2AlC MAX phase and chromium aluminides and carbides by SHS metallurgy are presented. The experiments were performed in an SHS reactor 3 L in volume at an initial inert gas (argon) pressure of 5 MPa. The synthesis was performed based on chemically coupled reactions: weakly exothermic (heat acceptor)—Cr2O3/3Al/C and strongly exothermic (heat donor)—3CaO2/2Al. The experimental results have good correlation with the preliminary thermodynamic calculations. It is shown that, when varying the composition of initial mixtures, it is possible to substantially affect the calculated and experimental synthesis parameters, as well as the phase composition and microstructure of final products. Optimal synthesis conditions of the material providing the maximal yield of the Cr2AlC phase in the ingot composition are established. The determining factor affecting the Cr2AlC content in the product is the occurrence time of the liquid phase under the synthesis conditions. It is shown that the maximal content of the Cr2AlC MAX phase and target product yield are attained at the 30% content of the strongly exothermic additive (3CaO2/2Al) in the initial charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Barsoum, M.W., MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Weinheim: Wiley-VCH, 2013.

    Book  Google Scholar 

  2. Radovic, M. and Barsoum, M.W., MAX phases: Bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull., 2013, vol. 92, no. 3, pp. 20–27.

    CAS  Google Scholar 

  3. Barsoum, M.W. and Radovic, M., Elastic and mechanical propertiesof the MAX phases, Annu. Rev. Mater. Res., 2011, vol. 41, no. 1, pp. 195–227.

    Article  CAS  Google Scholar 

  4. Barsoum, M. and El-Raghy, T., The MAX phases: Unique new carbide and nitride materials, Am. Sci., 2001, vol. 89, no. 4, pp. 336–345.

    Article  Google Scholar 

  5. Poon, B., Ponson, L., Zhao, J., and Ravichandran, G., Damage accumulation and hysteretic behavior of MAX phase materials, J. Mech. Phys. Solids, 2011, vol. 59, no. 10, pp. 2238–2257.

    Article  CAS  Google Scholar 

  6. Atikur Rahman, M. Study on structural, electronic, optical and mechanical properties of MAX phase compounds and applications: Review, Am.J. Mod. Phys., 2015, vol. 4, no 2, pp. 75–91.

    Google Scholar 

  7. Li, H., Li, S., and Zhou, Y., Cyclic thermal shock behavior of a Cr2AlC ceramic, Mater. Sci. Eng., A, 2014, vol. 607, pp. 525–529.

    Article  CAS  Google Scholar 

  8. Tian, W.B., Wang, P.L., Kan, Y.M., Zhang, G.J., Li, Y.X., and Yan, D.S., Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders, Mater. Sci. Eng., A, 2007, vol. 443, nos. 1–2, pp. 229–234.

    Article  Google Scholar 

  9. Xiao, L.O., Li, S.B., Song, G., and Sloof, W.G., Synthesis and thermal stability of Cr2AlC, J. Eur. Ceram. Soc., 2011, vol. 31, no. 8, pp. 1497–1502.

    Article  CAS  Google Scholar 

  10. Duan, X., Shen, L., Jia, D., Zhou, Y., van der Zwaag, S., and Sloof, W.G., Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders, J. Eur. Ceram. Soc., 2015, vol. 35, no. 5, pp. 1393–1400.

    Article  CAS  Google Scholar 

  11. Panigrahi, B.B., Chu, M.-C., Kim, Y.-Il., Cho, S.-J., and Gracio, J.J., Reaction synthesis and pressureless sintering of Cr2AlC powder, J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1530–1533.

    CAS  Google Scholar 

  12. Tian, W., Vanmeensel, K., Wang, P., Zhang, G., Li, Y., Vleugels, J., and Van der Biest, O., Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering, Mater. Lett., 2007, vol. 61, no. 22, pp. 4442–4445.

    Article  CAS  Google Scholar 

  13. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786.

    Article  CAS  Google Scholar 

  14. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, no. 4, pp. 203–239.

    Article  CAS  Google Scholar 

  15. Łopaciński, M., Puszynski, J., and Lis, J., Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique, J. Am. Ceram. Soc., 2001, vol. 84, no. 12, pp. 3051–3053.

    Article  Google Scholar 

  16. Zhu, C.-C., Zhu, J., Wu, H., and Lin, H., Synthesis of Ti3AlC2 by SHS and thermodynamic calculation based on first principles, Rare Met., 2015, vol. 34, no. 2, pp. 107–110.

    Article  CAS  Google Scholar 

  17. Konovalikhin, S.V., Kovalev, D.Y., Sytschev, A.E., Vadchenko, S.G., and Shchukin, A.S., Formation of nanolaminate structures in the Ti–Si–C system: A crystallochemical study, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 4, pp. 217–221.

    Article  CAS  Google Scholar 

  18. Yukhvid, V.I., High-temperature liquid-phase SHS processes: New trends and missions, Izv. Vyssh. Uchebn. Zaved.,Tsvetn. Metall., 2006, vol. 5, pp. 62–78.

    Google Scholar 

  19. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Promising Materials and Technologies for Self-Propagating High-Temperature Synthesis), Moscow: National Univ. of Science and Technology MISiS, 2011.

  20. Gorshkov, V.A., Miloserdov, P.A., Luginina, M.A., Sachkova, N.V., and Belikova, A.F., High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC, Inorg. Mater., 2017, vol. 53, no. 3, pp. 271–277.

    Article  CAS  Google Scholar 

  21. Gorshkov, V.A., Miloserdov, P.A., Sachkova, N.V., Luginina, M.A., and Yukhvid, V.I., SHS metallurgy of Cr2AlC MAX phase-based cast materials, Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 5, pp. 570—575.

    Article  Google Scholar 

  22. Gorshkov, V.A., Miloserdov, P.A., Karpov, A.V., Shchukin, A.S., and Sytschev, A.E., Investigation of the composition and properties of a Cr2AlC MAX phase-based material prepared by metallothermic SHS, Phys. Met. Metallogr., 2019, vol. 120, no. 5, pp. 471–475.

    Article  CAS  Google Scholar 

  23. Merzhanov, A.G. and Khaikin, B.I., Theory of combustion waves in homogeneous media, Prog. Energy Combust. Sci., 1988, vol. 14, no. 1, pp. 1–98.

    Article  CAS  Google Scholar 

  24. Merzhanov, A.G., Thermally coupled processes of self-propagating high-temperature synthesis, Dokl. Phys. Chem., 2010, vol. 434, no. 2, pp. 159–162.

    Article  CAS  Google Scholar 

  25. Shiryaev, A., Thermodynamics of SHS processes: An advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 4, pp. 351–362.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Gorshkov, P. A. Miloserdov, N. Yu. Khomenko or N. V. Sachkova.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, V.A., Miloserdov, P.A., Khomenko, N.Y. et al. Production of Cast Materials Based on the Cr2AlC MAX Phase by SHS Metallurgy Using Coupled Chemical Reactions. Russ. J. Non-ferrous Metals 61, 362–367 (2020). https://doi.org/10.3103/S1067821220030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220030086

Keywords:

Navigation