Skip to main content
Log in

Effect of Temperature on the Formation of Stable and Metastable Aluminide Phases in Al‒Zr‒Nb Alloys

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The conditions of the formation of stable and metastable aluminides Aln(Zr1 – xNbx) formed during the crystallization of superheated melts of the Al‒Zr‒Nb system are considered. Upon a close zirconium content in the alloys of 0.23–0.25 at %, the niobium content varies from 0.05 to 0.21 at %. Alloys are prepared in a resistance furnace at a temperature of 1230°C in an argon atmosphere in graphite crucibles. The alloys are cast into a bronze mold; the cooling rate is estimated as 200°C/s. The structural features, distribution, and morphology; the composition of matrix, dendritic cells, and aluminides; and the structural type of aluminides in the alloys are studied using scanning electron and optical microscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy. It is shown that the growth forms of stable aluminides (D023 structural type) change from faceted to dendritic and primary metastable aluminides (L12 structural type) begin to form; in the process of the Al‒Zr‒Nb melt, overheating was 360–365°C above the liquidus temperature. Exclusively metastable aluminides with both polyhedral and dendritic growth forms are formed in the Al‒Zr‒Nb alloys when the overheating of their melt is 390–395°C (as well as at higher overheating) above the liquidus temperature. The near-peritectic niobium composition of the Al‒Zr‒Nb alloy and the zirconium content (more than seven times higher than peritectic) are crucial factors in the formation of a large fraction of metastable AlnZr aluminides having a cubic L12 structure. It is shown that, in accordance with the rules of isomorphism, Nb replaces Zr at equivalent positions of the aluminides crystal lattice. The intensity of isomorphism of the formed Al4(Zr0.79Nb0.21) aluminides increases with the increase in temperature of the melt overheating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Here and below, at % is assumed unless otherwise specified.

REFERENCES

  1. Zakharov, V.V., About alloying of aluminum alloys with transition metals, Met. Sci. Heat Treat., 2017, vol. 59, nos. 1–2, pp. 67–71. https://doi.org/10.1007/s11041-017-0104-2

    Article  CAS  Google Scholar 

  2. Pozdnyakov, A.V., Osipenkova, A.A., Popov, D.A., Makhov, S.V., and Napalkov, V.I., Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc, Met. Sci. Heat Treat., 2017, vol. 58. nos. 9–10, pp. 537–542. https://doi.org/10.1007/s11041-017-0050-z

    Article  CAS  Google Scholar 

  3. Wu, H., Wen, S.P., Gao, K.Y., Huang, H., Wang, W., and Nie, Z.R., Effect of Er additions on the precipitation strengthening of Al-Hf alloys, Scr. Mater., 2014, vol. 87, pp. 5–8. https://doi.org/10.1016/j.scriptamat.2014.06.005

    Article  CAS  Google Scholar 

  4. Stan, K., Litynska-Dobrzynska, L., Ochin, P., Garzel, G., Wierzbicka-Miernik, A., and Wojewoda-Budka, J., Effect of Ti, Zr and Hf addition on microstructure and properties of rapidly solidified Al–Mn–Fe alloy, J. Alloys Compd., 2014, vol. 615, pp. S607–S611. https://doi.org/10.1016/j.jallcom.2013.11.160

    Article  CAS  Google Scholar 

  5. Tkacheva, O.Yu., Brodova, I.G., Arkhipov, P.A., and Zaikov, Yu.P., Effect of crystallization conditions on structure and modifying ability of Al–Sc alloys, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 7, pp. 67–74. https://doi.org/10.3103/S1067821217010126

    Article  Google Scholar 

  6. Yu, P., Yana, M., Tomus, D., Brice, C.A., Bettles, C.J., Muddle, B., and Qian, M., Microstructural development of electron beam processed Al–3Ti–1Sc alloy under different electron beam scanning speeds, Mater. Charact., 2018, vol. 143, pp. 43–49. https://doi.org/10.1016/j.matchar.2017.09.005

  7. Popova, E.A., Shubin, A.B., Kotenkov, P.V., Pastukhov, E.A., Bodrova, L.E., and Fedorova, O.M., Al–Ti–Zr master alloys: structure formation, Russ. Metall. (Engl. Transl.), 2012, no. 5, pp. 357–361. https://doi.org/10.1134/S0036029512050126

  8. Popova, E.A., Kotenkov, P.V., Shubin, A.B., and Pastukhov, E.A., Peculiarities of the Al–Hf–Sc master alloys structure, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 6, pp. 639–643. https://doi.org/10.3103/S1067821217060086

    Article  Google Scholar 

  9. Popova, E., Kotenkov, P., Shubin, A., and Gilev, I., Formation of metastable aluminides in Al–Sc–Ti (Zr, Hf) cast alloys, Met. Mater. Int., 2019. https://doi.org/10.1007/s12540-019-00397-x

  10. Popova, E.A., Kotenkov, P.V., and Shubin, A.B., Metastable aluminides formation in Al–Hf–Ti alloys, Tsvetn. Met. (Moscow, Russ. Fed.), 2017, no. 11, pp. 65–70. https://doi.org/10.17580/tsm.2017.11.12

  11. Srinivasan, S., Desch, P.B., and Schwarz, R.B., Metastable phases in the Al3X (X = Ti, Zr, and Hf) intermetallic system, Scr. Metall. Mater., 1991, vol. 25, no. 11, pp. 2513–2516. https://doi.org/10.1016/0956-716X(91)90059-A

    Article  CAS  Google Scholar 

  12. Malek, P., Janecek, M., Smola, B., Bartuska, P., and Plestil, J., Structure and properties of rapidly solidified Al–Zr–Ti alloys, J. Mater. Sci., 2000, vol. 35, pp. 2625–2633. https://doi.org/10.1023/A:1004739718504

    Article  CAS  Google Scholar 

  13. Brodova, I.G., Zamyatin, V.M., Popel’, P.S., Esin, V.O., Baum, B.A., Moiseev, A.I., Korshunov, I.P., Topchii, A.L., Tikhomirov, Yu.G., and Polents, I.V., Conditions of formation of metastable phases during crystallization of Al–Zr alloys, Melts Moscow, 1990, vol. 2, no. 6, pp. 441–445.

    Google Scholar 

  14. Norman, A.F. and Tsakiropoulos, P., Rapid solidification of Al–Hf alloys—solidification, microstructures and decomposition of solid-solutions, Int. J. Rapid Solidif., 1991, vol. 6, nos. 3–4, pp. 185–213.

    CAS  Google Scholar 

  15. Brodova, I.G., Polents, I.V., Esin, V.O., and Lobov, E.M., On the formation of the cast structure of supercooled Al–Ti alloys, Phys. Met. Metallogr., 1992, vol. 73, no. 1, pp. 63–67.

    Google Scholar 

  16. Knipling, K.E., Dunand, D.C., and Seidman, D.N., Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys, Metall. Mater. Trans. A, 2007, vol. 38, pp. 2552–2563. https://doi.org/10.1007/s11661-007-9283-6

    Article  CAS  Google Scholar 

  17. Carlsson, A.E. and Meschter, P.J., Relative stability of L12, D022, and D023 structures in MAl3 compounds, J. Mater. Res., 1989, vol. 4, no. 5, pp. 1060–1063. https://doi.org/10.1557/JMR.1989.1060

    Article  CAS  Google Scholar 

  18. De Luca, A., Seidman, D.N., and Dunand, D.C., Effects of Mo and Mn micro-additions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al–Zr–Sc–Er–Si alloys, Acta Mater., 2019, vol. 165, pp. 1–14. https://doi.org/10.1016/j.actamat.2018.11.031

    Article  CAS  Google Scholar 

  19. Knipling, K.E., Karnesky, R.A., Lee, C.P, Dunand, D.C, and Seidman, D.N., Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging, Acta Mater., 2010, vol. 58, no. 15, pp. 5184–5195. https://doi.org/10.1016/j.actamat.2010.05.054

    Article  CAS  Google Scholar 

  20. Erdeniz, D., De Luca, A., Seidman, D.N., and Dunand, D.C., Effects of Nb and Ta additions on the strength and coarsening resistance of precipitation-strengthened Al–Zr–Sc–Er–Si alloys, Mater. Charact., 2018, vol. 141, pp. 260–266. https://doi.org/10.1016/j.matchar.2018.04.051

    Article  CAS  Google Scholar 

  21. Yang Wang, Hongyu Liu, Xiaochun Ma, Ruizhi Wu, Jianfeng Sun, Legan Hou, Jinghuai Zhang, Xinlin Li, and Milin Zhang, Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy, Mater. Charact., 2019, vol. 15, pp. 241–247. https://doi.org/10.1016/j.matchar.2019.06.001

    Article  CAS  Google Scholar 

  22. Vo, N.Q., Bayansan, D., Sanaty-Zadeh, A., Ramos, E., and Dunand, D.C., Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy, Materialia, 2018, vol. 4, pp. 65–69. https://doi.org/10.1016/j.mtla.2018.08.030

    Article  Google Scholar 

  23. Zhongxia Liu, Zijiong Li, Mingxing Wang, and Yonggang Weng, Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al‒5Mg alloys, Mater. Sci. Eng., A, 2008, vols. 483–484, pp. 120–122. https://doi.org/10.1016/j.msea.2006.09.166

    Article  CAS  Google Scholar 

  24. Murray, J.L., Peruzzi, A., and Abriata, J.P., The Al–Zr (Aluminum–Zirconium) system, J. Phase Equilib., 1992, vol. 13, no. 3, pp. 277–291. https://doi.org/10.1007/BF02667556

    Article  CAS  Google Scholar 

  25. Okamoto, H., Phase Diagrams for Binary Alloys, Materials Park, OH: ASM Int., 2002.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The results were obtained using equipment from the Ural-M Center for Collective Usage and JSC TESCAN, St. Petersburg.

Funding

This work was carried out as part of the State Task of the Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, and Program of the Presidium of Ural Branch, Russian Academy of Sciences, no. 18-10-3-28.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Popova, P. V. Kotenkov, I. O. Gilev, S. Yu. Melchakov or A. B. Shubin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Bannov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.A., Kotenkov, P.V., Gilev, I.O. et al. Effect of Temperature on the Formation of Stable and Metastable Aluminide Phases in Al‒Zr‒Nb Alloys. Russ. J. Non-ferrous Metals 61, 319–324 (2020). https://doi.org/10.3103/S1067821220030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220030128

Keywords:

Navigation