Skip to main content
Log in

Mechanism of magnetic field-modulated luminescence from lanthanide ions in inorganic crystal: a review

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The luminescence from lanthanide ions has potential applications in light emitting diodes, biomedical, solar cells, sensors, display, etc. However, the luminescence is suffered from the various problems, such as low luminescence efficiency and inharmonious wavelength for energy transfer. Magnetic field is an efficient method to modulate the wavelength and intensity of luminescence from lanthanide ions. Magnetic field redistributes the populated electrons in the excited states to tune the wavelength of lanthanide ions by Zeeman effect, mixing effect, and quantum confinement effect. Magnetic field enhances or suppresses the luminescence intensity by the administration of cross-relaxation, energy transfer, and Boltzmann population. In this review, we first introduce the various phenomena and mechanisms of magnetic field modulated downshift luminescence from lanthanide ions, including Zeeman effect, cross-relaxation, crystal structure, absorption, quantum confinement effect, and magnetic–optical hysteresis. Then, we explain the regulation of upconversion luminescence by magnetic field, containing energy transfer and mixing effect. Finally, different options regarding how to understand the mechanism of magnetic field-modulated luminescence from lanthanide ions in the future are outlined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feng J, Zhang H. Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev. 2013;42(1):387.

    CAS  Google Scholar 

  2. Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011;50(26):5808.

    CAS  Google Scholar 

  3. Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev. 2013;42(16):6924.

    CAS  Google Scholar 

  4. Zhou J, Liu Z, Li F. Upconversion nanophosphors for small animal imaging. Chem Soc Rev. 2012;41(3):1323.

    CAS  Google Scholar 

  5. Eliseeva SV, Buenzli JCG. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev. 2010;39(1):189.

    CAS  Google Scholar 

  6. Chatterjee DK, Gnanasammandhan MK, Zhang Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small. 2010;6(24):2781.

    CAS  Google Scholar 

  7. Zhang C, Sun L, Zhang Y, Yan C. Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors. J Rare Earth. 2010;28(6):807.

    CAS  Google Scholar 

  8. Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114(4):2343.

    CAS  Google Scholar 

  9. Blass G, Grabmaier BC. Luminescent Materials. Berlin: Springer; 1994. 33.

    Google Scholar 

  10. Sark WGJHM, Meijerink A, Schropp REI. Solar spectrum conversion for photovoltaics using nanoparticles. Edited by Vasilis Fthenakis. Third Generation Photovoltaics. IntechOpen. 2012. doi: 10.5772/39213

  11. Ende BM, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys. 2009;11(47):11081.

    Google Scholar 

  12. Hung WB, Chen TM. Efficiency enhancement of silicon solar cells through a downshifting and antireflective oxysulfide phosphor layer. Sol Energ Mater Sol C. 2015;133:39.

    CAS  Google Scholar 

  13. Smet PF, Joos JJ. White light-emitting diodes stabilizing colour and intensity. Nat Mater. 2017;16(5):500.

    CAS  Google Scholar 

  14. Rabouw FT, Meijerink A. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells. J Phys Chem C. 2015;119(5):2364.

    CAS  Google Scholar 

  15. Wild J, Meijerink A, Rath JK, Sark WGJHM, Schropp REI. Upconverter solar cells: materials and applications. Energ Environ Sci. 2011;4(12):4835.

    Google Scholar 

  16. Han S, Qin X, An Z, Zhu Y, Liang L, Han Y, Huang W, Liu X. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nat Commun. 2016;7:13059.

    CAS  Google Scholar 

  17. Lozano-Gorrin AD, Rodriguez-Mendoza UR, Venkatramu V, Monteseguro V, Hernandez-Rodriguez MA, Martin IR, Lavin V. Lanthanide-doped Y3Ga5O12 garnets for nanoheating and nanothermometry in the first biological window. Opt Mater. 2018;84:46.

    CAS  Google Scholar 

  18. Runowski M, Stopikowska N, Szeremeta D, Goderski S, Skwierczynska M, Lis S. Upconverting lanthanide fluoride core@shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF4:Yb3+-Er3+@SiO2 temperature sensor. ACS Appl Mater Inter. 2019;11(14):13389.

    CAS  Google Scholar 

  19. Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10(11):924.

    CAS  Google Scholar 

  20. Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J, Shi Y, Leif RC, Huo Y, Shen J, Piper JA, Robinson JP, Jin D. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics. 2014;8(1):33.

    Google Scholar 

  21. Deng R, Qin F, Chen R, Huang W, Hong M, Liu X. Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotechnol. 2015;10(3):237.

    CAS  Google Scholar 

  22. Zhou L, Wang R, Yao C, Li X, Wang C, Zhang X, Xu C, Zeng A, Zhao D, Zhang F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat Commun. 2015;6:6938.

    CAS  Google Scholar 

  23. Liu X, Wang Y, Li X, Yi Z, Deng R, Liang L, Xie X, Loong DTB, Song S, Fan D, All AH, Zhang H, Huang L, Liu X. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat Commun. 2017;8:899.

    Google Scholar 

  24. Zhang J, Zhong Z, Wang X, Ma Z, Wang S, Han Y, Han J. Large photoluminescence enhancement of Er3+: GdVO4 crystal in both green and middle infrared regions under moderate low magnetic fields. Opt Mater Express. 2016;6(11):3446.

    CAS  Google Scholar 

  25. Bottrill M, Kwok L, Long NJ. Lanthanides in magnetic resonance imaging. Chem Soc Rev. 2006;6(35):557.

    Google Scholar 

  26. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, Carlos LD. Lanthanide-based luminescent molecular thermometers. New J Chem. 2011;35(6):1177.

    CAS  Google Scholar 

  27. Chen P, Song M, Wu E, Wu B, Zhou J, Zeng H, Liu X, Qiu J. Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale. 2015;7(15):6462.

    Google Scholar 

  28. Newman DJ. Theory of lanthanide crystal fields. Adv Phys. 1971;20(84):197.

    CAS  Google Scholar 

  29. D'Vries RF, Alvarez-Garcia S, Snejko N, Bausa LE, Gutierrez-Puebla E, de Andres A, Angeles MM. Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence. J Mater Chem C. 2013;1(39):6316.

    CAS  Google Scholar 

  30. Jha A, Joshi P, Shen S. Effect of nano-scale crystal field on the broadening of Er3+ emission in sodium tellurite glass ceramics. Opt Express. 2008;16(18):13526.

    CAS  Google Scholar 

  31. Sedlmeier A, Achatz DE, Fischer LH, Gorris HH, Wolfbeis OS. Photon upconverting nanoparticles for luminescent sensing of temperature. Nanoscale. 2012;4(22):7090.

    CAS  Google Scholar 

  32. Wang J, Deng R, MacDonald MA, Chen B, Yuan J, Wang F, Chi D, Hor TSA, Zhang P, Liu G, Han Y, Liu X. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater. 2014;13(2):157.

    CAS  Google Scholar 

  33. Zhao SN, Li LJ, Song XZ, Zhu M, Hao ZM, Meng X, Wu LL, Feng J, Song SY, Wang C, Zhang HJ. Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing. Adv Fun Mater. 2015;25(9):1463.

    CAS  Google Scholar 

  34. Zhu X, Feng W, Chang J, Tan YW, Li J, Chen M, Sun Y, Li F. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun. 2016;7:10437.

    CAS  Google Scholar 

  35. Ma ZW, Zhang JP, Wang X, Yu Y, Han JB, Du GH, Li L. Magnetic field induced great photoluminescence enhancement in an Er3+:YVO4 single crystal used for high magnetic field calibration. Opt Lett. 2013;38(19):3754.

    CAS  Google Scholar 

  36. Dong JS, Feng ZY, Meng XL, Xue QN, Wang LS, Huang XW. Determination of HEH (EHP) in rare earth extraction raffinate by ICP-AES. Chin J Rare Met. 2018;42(6):663.

    Google Scholar 

  37. Ma RT, Shang HY, Wang X, Jiang D. Dielectric, magnetic and microwave absorbing properties of polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 composites. Rare Met. 2017;36(2):118.

    CAS  Google Scholar 

  38. Liu P, Zhu EF, Yan CX, Ling ZC, Shi QN. Strength and electrical properties of graphene reinforced copper matrix composites with different nickel contents. Chin J Rare Met. 2018;42(7):735.

    Google Scholar 

  39. Song QG, Zhao JP, Gu WF, Zhen DD, Guo YR, Li ZP. Electronic properties influencing ductility of Nb-substituted γ-TiAl based alloys. Chin J Rare Met. 2018;42(7):705.

    Google Scholar 

  40. Li JL, Wang XD, Wu Y, Cao Z, Guo JQ, Zhang HP. Microstructure and mechanical properties of aluminum-matrix composite with different graphene contents. Chin J Rare Met. 2018;42(3):252.

    Google Scholar 

  41. Zhai YQ, Li RF, Li X, Li JH. Rapid synthesis and properties of color-tunable phosphors SrMoO4: Eu3+, Tb3+. Rare Met. 2017;36(10):828.

    CAS  Google Scholar 

  42. Liang Y, Shao LB, Li YK, Liang X, Wang HL, Liu P. Sodium metasilicate nonahydrate digestion of scheelite in low-temperature roast. Chin J Rare Met. 2018;42(6):668.

    Google Scholar 

  43. Patel NP, Srinivas M, Modi D, Verma V, Murthy KVR. Optimization of luminescence properties of Tb3+ doped α-Sr2P2O7 phosphor synthesized by combustion method. Rare Met. 2018;36(7):587.

    Google Scholar 

  44. Qiao JZ, Tian BH, Zhang Y, Zhou YJ, Guo XH, Song KX. Erosion behavior of annealed corrosion resistance of copper alloy with rare earth. Chin J Rare Met. 2018;42(12):1247.

    Google Scholar 

  45. Duan SB, Wan RM. Controlled growth of Au/Ni bimetallic nanocrystals with different nanostructures. Rare Met. 2017;36(4):229.

    CAS  Google Scholar 

  46. Wang J, Fu ZB, Jiang L. Phosphorus removal of high calcium and high phosphorus vanadium slag in acid system. Chin J Rare Met. 2018;42(3):331.

    Google Scholar 

  47. Yang G, Liu JP, Qin LY, Ren YH, Wang W. High cycle fatigue properties of laser deposited TA15 titanium alloy. Chin J Rare Met. 2018;42(11):1134.

    Google Scholar 

  48. Zhang B, Zhang XH, Zhang ZJ, Shang XD, Cai J, Wang W. Microstructure and properties of Ti/Ni layered composite with different structure produced by roll bonding. Chin J Rare Met. 2018;42(4):373.

    Google Scholar 

  49. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Wu D, Li F. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 2011;32(4):1148.

    CAS  Google Scholar 

  50. Xia A, Chen M, Gao Y, Wu D, Feng W, Li F. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials. 2012;33(21):5394.

    CAS  Google Scholar 

  51. Dong H, Sun LD, Yan CH. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev. 2015;44(6):1608.

    CAS  Google Scholar 

  52. Chen P, Zhang J, Xu B, Sang X, Chen W, Liu X, Han J, Qiu J. Lanthanide doped nanoparticles as remote sensors for magnetic fields. Nanoscale. 2014;6(19):11002.

    CAS  Google Scholar 

  53. Ohta H, Portugall O, Ubrig N, Fujisawa M, Katsuno H, Fatma E, Okubo S, Fujiwara Y. Photoluminescence measurement of Er, O-codoped GaAs under a pulsed magnetic field up to 60 T. J. Low Temp Phys. 2010;159(1–2):203.

    CAS  Google Scholar 

  54. Jiang W, Zhang J, Chen W, Chen P, Han J, Xu B, Zheng S, Guo Q, Liu X, Qiu J. Influence of high magnetic field on the luminescence of Eu3+-doped glass ceramics. J Appl Phys. 2014;116(12):123103.

    Google Scholar 

  55. Xiao Q, Zhang Y, Zhang J, Zhang H, Dong G, Han J, Qiu J. Dynamically tuning the optical properties of Europium-doped sodium niobate nano-crystals through magnetic field. Mater Res Express. 2016;3(11):115014.

    Google Scholar 

  56. Tong L, Han Y, Zhang K, Gao H, Guo Q, Fan T, Zhang D. Superexchange interaction contribution to the Zeeman splitting of the intra-4f-shell luminescence band in Gd3Ga4FeO12:Yb3+, Er3+. Opt Mater Express. 2018;8(11):3338.

    CAS  Google Scholar 

  57. Zhang Y, Xiao Q, He H, Zhang J, Dong G, Han J, Qiu J. Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals. J Mater Chem C. 2015;3(39):10140.

    CAS  Google Scholar 

  58. Chibotaru LF, Tikhomirov VK, Saurel D, Moshchalkov VV. Extraordinary magnetic field induced suppression of luminescence in Er3+-doped nano-glass-ceramics. J Appl Phys. 2009;106(5):053502.

    Google Scholar 

  59. Du G, Liu P, Guo W, Han Y, Zhang J, Ma Z, Han J, Liu Z, Yao K. The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals. J Mater Chem C. 2013;1(45):7608.

    CAS  Google Scholar 

  60. Han Y, Du G, Han J, Kan X, Li L. Crystal-field splitting of the bright Eu3+ ions in YPO4 micro-crystals detected by Zeeman splitting in pulsed high magnetic fields. J Low Temp Phys. 2013;170(5–6):430.

    CAS  Google Scholar 

  61. Han Y, Ma Z, Zhang J, Wang J, Du G, Xia Z, Han J, Li L, Yu X. Hidden local symmetry of Eu3+ in xenotime-like crystals revealed by high magnetic fields. J Appl Phys. 2015;117(5):055902.

    Google Scholar 

  62. Luthi SR, Gudel HU, Hehlen MP, Quagliano JR. Electronic energy-level structure, correlation crystal-field effects, and f-f transition intensities of Er3+ in Cs3Lu2Cl9. Phys Rev B. 1998;57(24):15229.

    CAS  Google Scholar 

  63. Tikhomirov VK, Chibotaru LF, Saurel D, Gredin P, Mortier M, Moshchalkov VV. Er3+-doped Nanoparticles for optical detection of magnetic field. Nano Lett. 2009;9(2):721.

    CAS  Google Scholar 

  64. Zhou YL, Wang X, Zhang JP, Han JB. Crystal field splitting and effective g factor of infrared emission band in Er3+: YVO4 single crystal. J Mol Struct. 2014;1065:186.

    Google Scholar 

  65. Zhang J, Ma Z, Han J, Du G, Zhou Y, Li L, Cheng Z. Absorption induced photoluminescence intensity modulation of Er3+:YVO4 single crystal under pulsed high magnetic field. J Lumin. 2013;144:53.

    CAS  Google Scholar 

  66. Zhang J, Wang X, Zhong Z, Ma Z, Wang S, Han Y, Han JB, Li L, Tang C. Magnetic field induced extraordinary photoluminescence enhancement in Er3+:YVO4 single crystal. J Appl Phys. 2015;118(8):083101.

    Google Scholar 

  67. Zhong Z, Wang X, Zhang J, Han JB. Experimental and theoretical study of magnetic field induced photoluminescence enhancement in Er3+:YVO4 crystals. J Phys D Appl Phys. 2017;50(47):475308.

    Google Scholar 

  68. Saurel D, Tikhomirov VK, Moshchalkov VV, Goerller-Walrand C, Driesen K. Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 T. Appl Phys Lett. 2008;92(17):171101.

    Google Scholar 

  69. Chen P, Jia H, Zhang J, Han J, Liu X, Qiu J. Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles. J Phys Chem C. 2015;119(10):5583.

    CAS  Google Scholar 

  70. Iftikhar K. Hypersensitivity in the 4f–4f absorption spectra of lanthanide(III) complexes. Inorg Chim Acta. 1987;129(2):261.

    CAS  Google Scholar 

  71. Tanner PA. Spectra, energy levels and energy transfer in high symmetry lanthanide compounds. Top Curr Chem. 2004;241:167.

    CAS  Google Scholar 

  72. Joos JJ, Poelman D, Smet PF. Energy level modeling of lanthanide materials: review and uncertainty analysis. Phys Chem Chem Phys. 2015;17(29):19058.

    CAS  Google Scholar 

  73. Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29(7):937.

    CAS  Google Scholar 

  74. Dai Y, Ma PA, Cheng Z, Kang X, Zhang X, Hou Z, Li C, Yang D, Zhai X, Lin J. Upconversion cell imaging and pH-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@hydrogel core-shell hybrid microspheres. ACS Nano. 2012;6(4):3327.

    CAS  Google Scholar 

  75. Jin J, Gu YJ, Man CWY, Cheng J, Xu Z, Zhang Y, Wang H, Lee VH, Cheng SH, Wong WT. Polymer-coated NaYF4: Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano. 2011;5(10):7838.

    CAS  Google Scholar 

  76. Vetrone F, Naccache R, Juarranz de la Fuente A, Sanz-Rodriguez F, Blazquez-Castro A, Martin RE, Jaque D, Garcia SJ, Capobianco JA. Intracellular imaging of hela cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale. 2010;2(4):495.

    CAS  Google Scholar 

  77. Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, Mao CB, Xu SK. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano. 2009;3(6):1580.

    CAS  Google Scholar 

  78. Yang D, Kang X, Ma P, Dai Y, Hou Z, Cheng Z, Li C, Lin J. Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials. 2013;34(5):1601.

    CAS  Google Scholar 

  79. Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coordin Chem Rev. 2018;364:10.

    CAS  Google Scholar 

  80. Yang D, Li C, Lin J. Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. Nanomedicine. 2015;10(16):2573.

    CAS  Google Scholar 

  81. Wang Y, Zheng K, Song S, Fan D, Zhang H, Liu X. Remote manipulation of upconversion luminescence. Chem Soc Rev. 2018;47(17):6473.

    CAS  Google Scholar 

  82. Biju S, Gallo J, Banobre-Lopez M, Manshian BB, Soenen SJ, Himmelreich U, Vander Elst L, Parac-Vogt TN. A magnetic chameleon: biocompatible lanthanide fluoride nanoparticles with magnetic field dependent tunable contrast properties as a versatile contrast agent for low to ultrahigh field MRI and optical imaging in biological window. Chem Eur J. 2018;24(29):7388.

    CAS  Google Scholar 

  83. Hong E, Liu L, Bai L, Xia C, Gao L, Zhang L, Wang B. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mat Sci Eng C-Mater. 2019;105:110097.

    CAS  Google Scholar 

  84. Jafari M, Rezvanpour A. Upconversion nano-particles from synthesis to cancer treatment: a review. Adv Powder Technol. 2019;30(9):1731.

    CAS  Google Scholar 

  85. Li H, Chen Q, Zhao J, Urmila K. Fabricating upconversion fluorescent nanoparticles modified substrate for dynamical control of cancer cells and pathogenic bacteria. J Biophotonics. 2017;10(8):1034.

    CAS  Google Scholar 

  86. Liu Y, Meng X, Bu W. Upconversion-based photodynamic cancer therapy. Coordin Chem Rev. 2019;379:82.

    CAS  Google Scholar 

  87. Wang S, Bi A, Zeng W, Cheng Z. Upconversion nanocomposites for photo-based cancer theranostics. J Mater Chem B. 2016;4(32):5331.

    CAS  Google Scholar 

  88. Wang Y, Song S, Zhang S, Zhang H. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today. 2019;25:38.

    CAS  Google Scholar 

  89. Cheng L, Wang C, Liu Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale. 2013;5(1):23.

    CAS  Google Scholar 

  90. Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H. Multifunctional NaYF4: Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem. 2011;21(17):6193.

    CAS  Google Scholar 

  91. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon S-Y, Suh YD, Lee SH, Hyeon T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater. 2012;24(42):5755.

    CAS  Google Scholar 

  92. Li X, Zhang F, Zhao D. Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today. 2013;8(6):643.

    CAS  Google Scholar 

  93. Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev. 2013;42(1):173.

    CAS  Google Scholar 

  94. Valiente R, Millot M, Rodriguez F, Gonzalez J, Broto JM, George S, Garcia-Revilla S, Romanyuk Y, Pollnau M. Er3+ luminescence as a sensor of high pressure and strong external magnetic fields. High Pressure Res. 2009;29(4):748.

    CAS  Google Scholar 

  95. Liu Y, Wang D, Shi J, Peng Q, Li Y. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew Chem Int Ed. 2013;52(16):4366.

    CAS  Google Scholar 

  96. Chen P, Zhong Z, Jia H, Zhou J, Han J, Liu X, Qiu J. Magnetic field enhanced upconversion luminescence and magnetic-optical hysteresis behaviors in NaYF4: Yb, Ho nanoparticles. RSC Adv. 2016;6(9):7391.

    CAS  Google Scholar 

  97. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater. 2011;10(12):968.

    CAS  Google Scholar 

  98. Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev. 2009;38(4):976.

    CAS  Google Scholar 

  99. Chen P, Jia H, Zhong Z, Han J, Guo Q, Zhou J, Liu X, Qiu J. Magnetic field modulated upconversion luminescence in NaYF4: Yb, Er nanoparticles. J Mater Chem C. 2015;3(34):8794.

    CAS  Google Scholar 

  100. Wang YL, Zhang JP, Han JB, Hao ZH, Wang QQ. High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4. J Appl Phys. 2015;117(8):083903.

    Google Scholar 

  101. Xiao Q, Zhang Y, Zhang H, Dong G, Han J, Qiu J. Dynamically tuning the up-conversion luminescence of Er3+/Yb3+ co-doped sodium niobate nano-crystals through magnetic field. Sci Rep. 2016;6:31327.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (No. 11704081), Guangxi Natural Science Foundation (No. 2017GXNSFBA198229), the Scientific Research Project for Higher Education of Guangxi Zhuang Autonomous Region (No. XBZ170336), the Doctoral Scientific Research Foundation of Guangxi University (No. BRP180253), and The Improvement of Basic Ability for Youth Teachers in Guangxi Education Authority (No. 2017KY0020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Chen or Cao-Feng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, SL., Chen, P. & Pan, CF. Mechanism of magnetic field-modulated luminescence from lanthanide ions in inorganic crystal: a review. Rare Met. 39, 1113–1126 (2020). https://doi.org/10.1007/s12598-020-01450-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01450-0

Keywords

Navigation