Skip to main content
Log in

High-precision parameter estimation and the Zeno–anti-Zeno crossover in an atom–cavity-optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme is proposed to estimate the decay rates of the subsystem in an atom–cavity-optomechanical system which also is known as the hybrid optomechanical system. Quantum Fisher information and quantum Zeno effect (QZE) are investigated under different conditions. The results show that the estimation precision of the decay rates can reach \(9.64\times 10^{-6}\), \(3.49\times 10^{-4}\) and \(7.91\times 10^{-5}\), respectively. The Zeno–anti-Zeno crossover can be realized in the hybrid optomechanical system. We find that both QZE and quantum anti-Zeno effect (QAZE) are always beneficial to the estimation of the mechanical oscillator decay rate. However, when the cavity decay rate is estimated, QAZE may enhance or inhibit the estimation precision at the different time regions. The results provide some potential applications in quantum networks and quantum Zeno switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giovanetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    ADS  Google Scholar 

  2. Giovanetti, V., Lloyd, S., Maccone, L.: Metrology, quantum. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  3. Giovanetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    ADS  Google Scholar 

  4. Schnabel, R., Mavalvala, N., McClelland, D.E., Lam, P.K.: Quantum metrology for gravitational wave astronomy. Nat. Commum. 1, 121 (2010)

    ADS  Google Scholar 

  5. Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85, 2010 (2000)

    ADS  Google Scholar 

  6. Taylor, M.A., Bowen, W.P.: Quantum metrology and its application in biology. Phys. Rep. 615, 1 (2016)

    ADS  MathSciNet  Google Scholar 

  7. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  8. Holevo, A.S.: Probabilistic and Statistical Aspect of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  9. Gardiner, C.W., Zoller, P.: Quantum Noise, 3rd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  10. Zwierz, M., Pérez-Delgado, Carlos, A., Kok P: General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010)

    ADS  Google Scholar 

  11. Holland, M.J., Burnett, K.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355 (1993)

    ADS  Google Scholar 

  12. Campos, R.A., Gerry, C.C., Benmoussa, A.: Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements. Phys. Rev. A 68, 023810 (2003)

    ADS  Google Scholar 

  13. Dowling, J.P.: Quantum optical metrology—the lowdown on high-NOON states. Contemp. Phys. 49, 125 (2008)

    ADS  Google Scholar 

  14. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    ADS  Google Scholar 

  15. Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    ADS  Google Scholar 

  16. Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008)

    ADS  Google Scholar 

  17. Tilma, T., Hamaji, S., Munro, W.J., Nemoto, K.: Eentanglement is not a critical resource for quantum metrology. Phys. Rev. A 81, 022108 (2010)

    ADS  Google Scholar 

  18. Datta, A., Shaji, A.: Quantum metrology without quantum entanglement. Mod. Phys. Lett. B 26, 1230010 (2012)

    ADS  Google Scholar 

  19. Sahota, J., Quesada, N.: Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement. Phys. Rev. A 91, 013808 (2015)

    ADS  Google Scholar 

  20. Gammelmark, S., Mølmer, K.: Bayesian parameter inference from continuously monitored quantum systems. Phys. Rev. A 87, 032115 (2013)

    ADS  Google Scholar 

  21. Kiilerich, A.H., Mølmer, K.: Quantum Zeno effect in parameter estimation. Phys. Rev. A 92, 032124 (2015)

    ADS  Google Scholar 

  22. Berrada, K.: Protecting the precision of estimation in a photonic crystal. J. Opt. Soc. Am. B 32, 571 (2015)

    ADS  Google Scholar 

  23. Rangani Jahromi, H.: Parameter estimation in plasmonic QED. Opt. Commun. 411, 119 (2018)

    ADS  MathSciNet  Google Scholar 

  24. Farajollahi, B., Jararzadeh, M., Rangani Jahromi, H., Amniat-Talab, M.: Estimation of temperature in micromaser-type systems. Quant. Inf. Proc. 17, 119 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    ADS  Google Scholar 

  26. Napolitano, M., Koschorreck, M., Dubost, B., Behbood, N., Sewell, R., Mitchell, M.W.: Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486 (2011)

    ADS  Google Scholar 

  27. Zheng, Q., Yao, Y., Li, Y.: Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Phys. Rev. A 93, 013848 (2016)

    ADS  Google Scholar 

  28. Li, G.L., Wang, X.G.: Heisenberg-limited estimation of the coupling rate in an optomechanical system with a two-level system. Phys. Rev. A 98, 013803 (2018)

    ADS  Google Scholar 

  29. Chen, G., Zhang, L.J., Zhang, W.H., Peng, X.X., Xu, L., Liu, Z.D., Xu, X.Y., Tang, J.S., Sun, Y.N., He, D.Y., Xu, J.S., Zhou, Z.Q., Li, C.F., Guo, G.C.: Achieving Heisenberg-scaling precision with projective measurement on single photons. Phys. Rev. Lett. 121, 060506 (2018)

    ADS  Google Scholar 

  30. Faizi, E., Mahmoudi, P.: Ultimate bound and optimal measurement for estimation of coupling constant in Tavis–Cummings model. Quant. Inf. Proc. 17, 303 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Rangani Jahromi, H.: Relation between quantum probe and entanglement in \(n\)-qubit systems within Markovian and non-Markovian environments. J. Mod. Opt. 64, 1377 (2017)

    ADS  Google Scholar 

  32. Gammelmark, S., Mølmer, K.: Fisher information and the quantum Cramér–Rao sensitivity limit of continuous measurements. Phys. Rev. Lett. 112, 170401 (2014)

    ADS  Google Scholar 

  33. Kiilerich, A.H., Mølmer, K.: Parameter estimation by multichannel photon counting. Phys. Rev. A 91, 012119 (2015)

    ADS  MathSciNet  Google Scholar 

  34. Dinani, H.T., Gupta, M.K., Dowling, J.P., Berry, D.W.: Quantum-enhanced spectroscopy with entangled multiphoton states. Phys. Rev. A 93, 063804 (2016)

    ADS  Google Scholar 

  35. Mogilevtsev, D., Garusov, E., Korolkov, M.V., Shatokhin, V.N., Cavalcanti, S.B.: Restoring the Heisenberg limit via collective non-Markovian dephasing. Phys. Rev. A 98, 042116 (2018)

    ADS  Google Scholar 

  36. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    ADS  Google Scholar 

  37. Zhang, G.F., Zhu, H.J.: Surpassing the shot-noise limit by homodyne-mediated feedback. Opt. Lett. 41, 3932 (2016)

    ADS  Google Scholar 

  38. Xie, D., Xu, C.L.: Enhancing precision of damping rate by PT symmetric Hamiltonian. Quant. Inf. Proc. 18, 86 (2019)

    MATH  Google Scholar 

  39. Dorsel, A., McCullen, J.D., Meystre, P., Vignes, E., Walther, H.: Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550 (1983)

    ADS  Google Scholar 

  40. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    ADS  Google Scholar 

  41. Nunnenkamp, A., Børkje, K., Girvin, S.M.: Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011)

    ADS  Google Scholar 

  42. Brooks, D.W.C., Botter, T., Schreppler, S., Purdy, T.P., Brahms, N., Stamper-Kurn, D.M.: Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476 (2012)

    ADS  Google Scholar 

  43. Ockeloen-Korppi, C.F., Damskägg, E., Pirkkalainen, J.M., Asjad, M., Clerk, A.A., Massel, F., Wooley, M.J., Sillanpää, M.A.: Stabilized entanglement of massive mechanical oscillators. Nature 556, 478 (2018)

    ADS  Google Scholar 

  44. Liao, X.P., Fang, M.F., Zhou, X.: Effects of partial-collapse measurement on the parameter-estimation precision of noisy quantum channels. Quant. Inf. Proc. 16, 241 (2017)

    MATH  Google Scholar 

  45. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    ADS  MathSciNet  Google Scholar 

  46. Facchi, P., Pascazio, S.: Quantum zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Kaulakys, B., Gontis, V.: Quantum anti-Zeno effect. Phys. Rev. A 76, 012109 (2007)

    Google Scholar 

  48. Fischer, M.C., Gutiérrez-Medina, B., Raizen, M.G.: Observation of the quantum Zeno and anti-zeno effects in an unstable system. Phys. Rev. Lett. 56, 1131 (1997)

    Google Scholar 

  49. Segal, D., Reichman, D.R.: Zeno and anti-Zeno effects in spin-bath models. Phys. Rev. A 76, 012109 (2007)

    ADS  Google Scholar 

  50. Maniscalco, S., Piilo, J., Suominen, K.A.: Zeno and anti-zeno effects for quantum Brownian motion. Phys. Rev. Lett. 97, 130402 (2006)

    ADS  MATH  Google Scholar 

  51. Wu, W., Lin, H.Q.: Quantum Zeno and anti-Zeno effects in quantum dissipative systems. Phys. Rev. A 95, 042132 (2017)

    ADS  Google Scholar 

  52. Thilagam, A.: Zeno-anti-Zeno crossover dynamics in a spin-boson system. J. Phys. A Math. Theor. 43, 155301 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Zhou, L., Yang, S., Liu, Y.X., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)

    ADS  Google Scholar 

  54. Zhou, L., Kuang, L.M.: Zeno-anti-Zeno crossover via external fields in a one-dimensional coupled-cavity waveguide. Phys. Rev. A 82, 042113 (2010)

    ADS  Google Scholar 

  55. Cao, X.F., Ai, Q., Sun, C.P., Nori, F.: The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency. Phys. Lett. A 376, 349 (2012)

    ADS  MATH  Google Scholar 

  56. He, S., Wang, C., Duan, L.W., Chen, Q.H.: Zeno effect of an open quantum system in the presence of 1/f noise. Phys. Rev. A 97, 022108 (2018)

    ADS  Google Scholar 

  57. Liu, N., Li, J.Q., Liang, J.Q.: Entanglement in a tripartite cavity-optomechanical system. Int. J. Theor. Phys. 52, 706 (2013)

    MATH  Google Scholar 

  58. James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its application in quantum information. Can. J. Phys. 85, 625 (2007)

    ADS  Google Scholar 

  59. Plenio, M.B., Knight, P.L.: The quantum jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998)

    ADS  Google Scholar 

  60. Zhou, B.Y., Li, G.X.: Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot-cavity system. Phys. Rev. A 94, 033809 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 91536115 and 11534008) and Natural Science Foundation of Shaanxi Province (No. 2016JM1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyan Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Liu, W., He, Y. et al. High-precision parameter estimation and the Zeno–anti-Zeno crossover in an atom–cavity-optomechanical system. Quantum Inf Process 19, 232 (2020). https://doi.org/10.1007/s11128-020-02733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02733-2

Keywords

Navigation