Skip to main content
Log in

Micro-cones Array-Based Plasmonic Metasurface for Sensitive and Enhanced Raman Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report a micro-cone unit-based plasmonic metasurface for surface-enhanced Raman spectroscopy. The unit consists of Au cone-shaped needle, Au thin film, and SiO2 substrate. To verify performance of the structure for surface-enhanced Raman scattering (SERS) detection, both theoretical and experimental studies are performed. Highly efficient coupling conditions satisfied by the structure, ∇Φ > k0, the metasurface can realize the SERS measurement with detection limit and analytical enhancement factor (AEF) as high as 10−8 M and 109, respectively. With concentrations of benzenethiol ranging from 10−2 down to 10−8 M, the ratio of Raman intensity Iω2/Iω1 increases from 0.6 to 0.85 and Iω3/Iω1 from 0.9 to 1.3. This structure can provide a new insight for biosensing and biochemistry analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  CAS  Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Ding SY, Yi J, Li JF, Ren B, Wu DY (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16021

    Article  CAS  Google Scholar 

  4. Schlucker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem 53:4756–4795

    Article  CAS  Google Scholar 

  5. Cabalo J, Guicheteau JA, Christesen S (2013) Toward understanding the influence of intermolecular interactions and molecular orientation on the chemical enhancement of SERS. J Phys Chem A 117:9028–9038

    Article  CAS  Google Scholar 

  6. Saikin SK, Olivares-Amaya R, Rappoport D, Stopa M, Aspuru-Guzik A (2009) On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters. Phys Chem Chem Phys 11:9401–9411

    Article  CAS  Google Scholar 

  7. Saikin SK, Chu YZ, Rappoport D, Crozier KB, Aspuru-Guzik A (2010) Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates. J Phys Chem Lett 1:2740–2746

    Article  CAS  Google Scholar 

  8. Valley N, Greeneltch N, Van Duyne RP, Schatz GC (2013) A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J Phys Chem Lett 4:2599–2604

    Article  CAS  Google Scholar 

  9. Carron KT, Hurley LG (1991) Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy: thiophenol on copper, silver, and gold metal surfaces. J Phys Chem US 95:9979–9984

    Article  CAS  Google Scholar 

  10. Szafranski CA, Tanner W, Laibinis PE, Garrell RL (1998) Surface-enhanced Raman spectroscopy of aromatic thiols and disulfides on gold electrodes. Langmuir 14:3570–3579

    Article  CAS  Google Scholar 

  11. Smythe EJ, Dickey MD, Bao JM, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9:1132–1138

    Article  CAS  Google Scholar 

  12. Kim K, Kim HS, Park HK (2006) Facile method to prepare surface-enhanced-Raman-scattering-active Ag nanostructures on silica spheres. Langmuir 22:8083–8088

    Article  CAS  Google Scholar 

  13. Krajczewski J, Kudelski A (2019) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Front Chem 7:410

    Article  CAS  Google Scholar 

  14. Zhang XY, Zheng YH, Liu X, Lu W, Dai JY, Lei DY, MacFarlane DR (2015) Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv Mater 27:1090–1096

    Article  CAS  Google Scholar 

  15. Scarabelli L, Coronado-Puchau M, Giner-Casares JJ, Langer J, Liz-Marzan LM (2014) Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8:5833–5842

    Article  CAS  Google Scholar 

  16. Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26:14943–14950

    Article  CAS  Google Scholar 

  17. Park HK, Yoon JK, Kim K (2006) Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering. Langmuir 22:1626–1629

    Article  CAS  Google Scholar 

  18. Chen A, Eugene ADPIII, Demortière A, Joshi-Imre A, Shevchenko EV, Gray SK, Welp U, Vlasko-Vlasov VK (2011) Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Small 7:2365–2371

    Article  CAS  Google Scholar 

  19. Han SW, Lee SJ, Kim K (2001) Self-assembled monolayers of aromatic thiol and selenol on silver: comparative study of adsorptivity and stability. Langmuir 17:6981–6987

    Article  CAS  Google Scholar 

  20. Qi JW, Li YD, Yang M, Wu Q, Chen ZQ, Wang WD, Lu WQ, Yu XY, Xu JJ, Sun Q (2013) Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res Lett 8:437

    Article  CAS  Google Scholar 

  21. Fu YQ, Xu ZW, Fang FZ et al (2011) Chapter 9 nanofabrication and characterization of Plasmonic structures, in book titled “Nanofabrication” published by InTech Publisher in Oct. 2011.

  22. Cui SY, You YS, Zhao KY, Fu YQ, Zhu SL (2018) Experimentalstudy of metasurface-based nanoantennas array fabricated using heavy ion tracking for biochemistry sensing. Sensors Actuators B Chem 273:815–820

    Article  CAS  Google Scholar 

  23. Yang SK, Dai XM, Stogin BB, Wong T-S (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci U S A 113:268–273

    Article  CAS  Google Scholar 

  24. He Q, Sun SL, Xiao SY, Zhou L (2018) High-efficiency Metasurfaces: principles, realizations, and applications. Adv Opt Mater 6:1800415

    Article  CAS  Google Scholar 

  25. Sun SL, He Q, Xiao SY, Xu Q, Li X, Zhou L (2012) Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11:426–431

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Gaussian (2009) Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  27. Su Y, Shi YZ, Wang P, Du JL, Raschke MB, Pang L (2019) Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering. Beilstein J Nanotechnol 10:549–556

    Article  CAS  Google Scholar 

  28. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  29. Jin M, van Wolferen H, Wormeester H, van den Berg A, Carlen ET (2012) Large-area nanogap plasmon resonator arrays for plasmonics applications. Nanoscale 4:4712–4718

    Article  CAS  Google Scholar 

  30. Cassar RN, Graham D, Larmour I, Wark AW, Faulds K (2014) Synthesis of size tunable monodispersed silver nanoparticles and the effect of size on SERS enhancement. Vib Spectrosc 71:41–46

    Article  CAS  Google Scholar 

  31. Pradhan M, Sinha AK, Pal T (2014) Mn oxide-silver composite nanowires for improved thermal stability, SERS and electrical conductivity. Chemistry 20:9111–9119

    CAS  Google Scholar 

  32. Kuttner C, Mayer M, Dulle M, Moscoso A, López-Romero JM, Förster S, Fery A, Pérez-Juste J, Contreras-Cáceres R (2018) Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance. ACS Appl Mater Interfaces 10:11152–11163

    Article  CAS  Google Scholar 

  33. Trojanowska A, Pazos-Perez N, Panisello C, Gumi T, Guerrini L, Alvarez-Puebla RA (2015) Plasmonic-polymer hybrid hollow microbeads for surface-enhanced Raman scattering (SERS) ultradetection. J Colloid Interface Sci 460:128–134

    Article  CAS  Google Scholar 

  34. Magno G, Belier B, Barbillon G (2018) Al/Si nanopillars as very sensitive SERS substrates. Materials 11

Download references

Funding

This work is supported by National Natural Science Foundation of China with approved number of U1532133, the program of China Scholarships Council under grant number 201906070107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Fu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Tian, C., Su, Y. et al. Micro-cones Array-Based Plasmonic Metasurface for Sensitive and Enhanced Raman Detection. Plasmonics 15, 2003–2009 (2020). https://doi.org/10.1007/s11468-020-01223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01223-6

Keywords

Navigation