Skip to main content
Log in

Plasmonic Properties of Thin Annealed Gold Films

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Spectroscopic ellipsometry was used to check plasmonic properties of thin annealed gold films depending on the thickness of the annealed films and parameters of the annealing. It is demonstrated that the position of the plasmonic resonance is defined by the size of produced nanoparticles together with the strength of interparticle interactions. It is shown that the account of interparticle interactions is necessary for the correct description of optical properties of layers of plasmonic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  2. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898–911

    Article  CAS  Google Scholar 

  3. Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37:946–954

    Article  CAS  Google Scholar 

  4. Christopher P, Xin HL, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3:467–472

    Article  CAS  Google Scholar 

  5. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9:538–544

    Article  CAS  Google Scholar 

  6. Piliarik M, Kvasnička P, Galler N, Krenn JR, Homola J (2011) Local refractive index sensitivity of plasmonic nanoparticles. Opt Express 19:9213–9220

    Article  CAS  Google Scholar 

  7. Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8408

    Article  CAS  Google Scholar 

  8. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  9. Porath D, Millo O (1996) Scanning tunneling microscopy studies and computer simulations of annealing of gold films. J Vac Sci Technol B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14:30–37

    Article  CAS  Google Scholar 

  10. De los Santos VL, Lee D, Seo J, Leon FL, Bustamante DA, Suzuki S, Yu M, Mitrelias T, Ionescu A, Barnes CHW (2009) Crystallization and surface morphology of Au/SiO2 thin films following furnace and flame annealing. Surf Sci 603:2978–2985

    Article  CAS  Google Scholar 

  11. José-Yacamán M, Gutierrez-Wing C, Miki M, Yang D-Q, Piyakis KN, Sacher E (2005) Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B 109:9703–9711

    Article  CAS  Google Scholar 

  12. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  13. Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21:173–187

    Article  CAS  Google Scholar 

  14. Bosi G, De Dormale B (1985) Substrate-related effects on the optical behavior of a granular surface: the Maxwell Garnett theory revisited. J Appl Phys 58:513–517

    Article  CAS  Google Scholar 

  15. Persson BNJ (1983) Lateral interactions in small particle systems. J de Physique Suppl. 44:C10-409–C10-420

    Google Scholar 

  16. Yamaguchi T, Yoshida S, Kinbara A (1974) Effect of retarded dipole-dipole interactions between island particles on the optical plasma-resonance absorption of a silver-island film. J Opt Soc Am 64:1563–1568

    Article  Google Scholar 

  17. Bortchagovsky EG, Mishakova TO, Hingerl K (2014) Ellipsometry of monolayers of metallic nanoparticles taking into account depolarization. Thin Solid Films 571:625–630

    Article  CAS  Google Scholar 

  18. Bortchagovsky EG (1997) Ellipsometric method for investigation of the optical anisotropy of thin films: theory and calculations. Thin Solid Films 307:192–199

    Article  CAS  Google Scholar 

  19. Bortchagovsky EG, Dejneka A, Jastrabik L, Lozovski VZ, Mishakova TO (2015, 2015) Deficiency of standard effective-medium approximation for ellipsometry of layers of nanoparticles. J Nanomater:602848 1–8

  20. Losurdo M, Hingerl K (eds) (2013) Ellipsometry at the nanoscale. Springer, Heidelberg

    Google Scholar 

  21. Oates TWH, Wormeester H, Arwin H (2011) Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog Surf Sci 86:328–376

    Article  CAS  Google Scholar 

  22. Azzam RMA, Bashara NM (1987) Ellipsometry and polarized light. Elsevier, Amsterdam

    Book  Google Scholar 

  23. Travaly Y, Zhang L, Zhao Y, Pfeffer R, Uhrich K, Cosandey F, Garfunkel E, Madeya TE (1999) Nucleation, growth, and aggregation of gold on polyimide surfaces. J Mater Res 14:3673–3683

    Article  CAS  Google Scholar 

  24. Bortchagovsky EG, Fischer UC (2002) On the modulation of optical transmission spectra of thin dye layers by a supporting medium. J Chem Phys 117:5384–5392

    Article  CAS  Google Scholar 

  25. Bortchagovsky E (2018, 2018) Simple modeling of the ratio of fields at a tip and a contacting surface with external illumination. J Nanotechnol:3898524 1–6

  26. Trollmann J, Pucci A (2014) Infrared dielectric function of gold films in relation to their morphology. J Phys Chem C 118:15001–15008

    Article  CAS  Google Scholar 

  27. Yamaguchi T, Yoshida S, Kinbara A (1971) Optical properties of aggregated silver films. J Opt Soc Am 61:62–69

    Article  Google Scholar 

  28. Chan EC, Marton JP (1974) Generalized Maxwell Garnett equations for rough surfaces. J Appl Phys 45:5004–5007

    Article  CAS  Google Scholar 

  29. Bedeaux D, Vlieger J (2004) Optical properties of surfaces. Imperial College Press, London

    Book  Google Scholar 

  30. Bortchagovsky EG, Lozovski VZ, Mishakova TO (2010) Theory of the ellipsometry of a layer of semiconductor nanoparticles covering the substrate. Ukr J Phys 55:1135–1144

    CAS  Google Scholar 

  31. Bortchagovsky EG, Lozovski VZ, Mishakova TO (2011) Model for the effective medium approximation of nanostructured layers with the account of interparticle interactions. Proc SPIE 8070:807018 1–8

    Article  Google Scholar 

  32. Aspnes DE (1982) Local-field effects in effective-medium theory: a microscopic perspective. Am J Phys 50:704–709

    Article  Google Scholar 

  33. Wang D-S, Lin C-W (2007) Density-dependent optical response of gold nanoparticle monolayers on silicon substrates. Opt Lett 32:2128–2130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EB and TM greatly acknowledge the support from OeAD in the frame of Ukraine–Austria bilateral project for the visit of the Johannes Kepler University Linz and are very thankful to Prof. Kurt Hingerl for the possibility to perform these measurements at his department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bortchagovsky.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortchagovsky, E., Mishakova, T. & Styopkin, V. Plasmonic Properties of Thin Annealed Gold Films. Plasmonics 15, 2011–2017 (2020). https://doi.org/10.1007/s11468-020-01227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01227-2

Keywords

Navigation