Skip to main content

Advertisement

Log in

The Runx1/Notch1 Signaling Pathway Participates in M1/M2 Microglia Polarization in a Mouse Model of Temporal Lobe Epilepsy and in BV-2 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microglial activation and phenotypic shift play vital roles in many neurological diseases. Runt-related transcription factor-1 (Runx1), which is localized on microglia, inhibits amoeboid microglial proliferation. Preliminary data have indicated that the interaction of Runx1 with the Notch1 pathway affects the hemogenic endothelial cell shift. However, little is known about the effect of Runx1 and the Notch1 signaling pathway on the phenotypic shift of microglia during neuroinflammation, especially in temporal lobe epilepsy (TLE). A mouse model of TLE induced by pilocarpine and the murine microglia cell line BV-2 were used in this study. The proportion of microglia was analyzed using flow cytometry. Western blot (WB) analysis and quantitative real-time polymerase chain reaction were used to analyze protein and gene transcript levels, respectively. Immunohistochemistry was used to show the distribution of Runx1. In the present study, we first found that in a male mouse model of TLE induced by pilocarpine, flow cytometry revealed a time-dependent M2-to-M1 microglial transition after status epilepticus. The dynamic expression patterns of Runx1 and the downstream Notch1/Jagged1/Hes5 signaling pathway molecules in the epileptic hippocampus were determined. Next, Runx1 knockdown by small interfering RNA in BV-2 cells strongly promoted an M2-to-M1 microglial phenotype shift and inhibited Notch1/Jagged1/Hes5 pathway expression. In conclusion, Runx1 may play a critical role in the M2-to-M1 microglial phenotype shift via the Notch1 signaling pathway during epileptogenesis in a TLE mouse model and in BV-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR (2014) The consequences of refractory epilepsy and its treatment. Epilepsy Behav 37:59–70. https://doi.org/10.1016/j.yebeh.2014.05.031

    Article  PubMed  Google Scholar 

  2. Liu TT, Feng L, Liu HF, Shu Y, Xiao B (2017) Altered axon initial segment in hippocampal newborn neurons, associated with recurrence of temporal lobe epilepsy in rats. Mol Med Rep 16:3169–3178. https://doi.org/10.3892/mmr.2017.7017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L, Li Y (2016) The ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol 53:561–576. https://doi.org/10.1007/s12035-014-9020-2

    Article  CAS  PubMed  Google Scholar 

  4. Najjar S, Pearlman D, Miller DC, Devinsky O (2011) Refractory epilepsy associated with microglial activation. Neurologist 17:249–254. https://doi.org/10.1097/NRL.0b013e31822aad04

    Article  PubMed  Google Scholar 

  5. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51:1069–1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x

    Article  CAS  PubMed  Google Scholar 

  6. Cascino GD (2008) When drugs and surgery don't work. Epilepsia 49(Suppl 9):79–84. https://doi.org/10.1111/j.1528-1167.2008.01930.x

    Article  PubMed  Google Scholar 

  7. Drion CM, van Scheppingen J, Arena A, Geijtenbeek KW, Kooijman L, van Vliet EA, Aronica E, Gorter JA (2018) Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo—in search of potential anti-epileptogenic strategies for temporal lobe epilepsy. J Neuroinflammation 15:212. https://doi.org/10.1186/s12974-018-1247-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391. https://doi.org/10.1038/nrneurol.2009.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201. https://doi.org/10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  11. Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain 138:1138–1159. https://doi.org/10.1093/brain/awv066

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070. https://doi.org/10.1161/strokeaha.112.659656

    Article  CAS  PubMed  Google Scholar 

  13. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100:13632–13637. https://doi.org/10.1073/pnas.2234031100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  15. Musto AE, Gjorstrup P, Bazan NG (2011) The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis. Epilepsia 52:1601–1608. https://doi.org/10.1111/j.1528-1167.2011.03081.x

    Article  CAS  PubMed  Google Scholar 

  16. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743. https://doi.org/10.1111/j.1528-1167.2005.00298.x

    Article  CAS  PubMed  Google Scholar 

  17. Benson MJ, Manzanero S, Borges K (2015) Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56:895–905. https://doi.org/10.1111/epi.12960

    Article  CAS  PubMed  Google Scholar 

  18. Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST, Ling EA (2008) Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia 56:1224–1237. https://doi.org/10.1002/glia.20692

    Article  PubMed  Google Scholar 

  19. Wang W, Tan H, Liu H, Peng H, Li X, Dang X, He X (2018) Green tea polyphenols protect against preglomerular arteriopathy via the jagged1/notch1 pathway. Am J Transl Res 10:3276–3290

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Lu M, Zhang X, Kuai Y, Mei Y, Tan Q, Zhong K, Sun X, Tan W (2019) Isosteviol sodium protects against ischemic stroke by modulating microglia/macrophage polarization via disruption of GAS5/miR-146a-5p sponge. Sci Rep 9:12221. https://doi.org/10.1038/s41598-019-48759-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu F, Luo T, Mei Y, Liu H, Dong J, Fang Y, Peng J, Guo Y (2018) Simvastatin alters M1/M2 polarization of murine BV2 microglia via Notch signaling. J Neuroimmunol 316:56–64. https://doi.org/10.1016/j.jneuroim.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  22. Wu L, Li Y, Yu M, Yang F, Tu M, Xu H (2018) Notch signaling regulates microglial activation and inflammatory reactions in a rat model of temporal lobe epilepsy. Neurochem Res 43:1269–1282. https://doi.org/10.1007/s11064-018-2544-5

    Article  CAS  PubMed  Google Scholar 

  23. Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19:2331–2342. https://doi.org/10.1101/gad.1337005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coffman JA (2003) Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol Int 27:315–324. https://doi.org/10.1016/s1065-6995(03)00018-0

    Article  CAS  PubMed  Google Scholar 

  25. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S (2012) Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J Neurosci 32:11285–11298. https://doi.org/10.1523/jneurosci.6182-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Logan TT, Villapol S, Symes AJ (2013) TGF-beta superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS ONE 8:e59250. https://doi.org/10.1371/journal.pone.0059250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M, Speck NA (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126:2563–2575

    CAS  PubMed  Google Scholar 

  29. North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672. https://doi.org/10.1016/s1074-7613(02)00296-0

    Article  CAS  PubMed  Google Scholar 

  30. Richard C, Drevon C, Canto PY, Villain G, Bollerot K, Lempereur A, Teillet MA, Vincent C, Rossello Castillo C, Torres M, Piwarzyk E, Speck NA, Souyri M, Jaffredo T (2013) Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis. Dev Cell 24:600–611. https://doi.org/10.1016/j.devcel.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Peng Z, Xiao B, Houser CR (2010) Activation of ERK by spontaneous seizures in neural progenitors of the dentate gyrus in a mouse model of epilepsy. Exp Neurol 224:133–145. https://doi.org/10.1016/j.expneurol.2010.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veliskova J (2006) Behavioral characterization of seizures in rats. In: Pitkänen A, Schwartskroin PA, Solomon LM (eds) Models of seizures and epilepsy. Elsevier Academic Press, Burlington, pp 601–611

    Chapter  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  34. Yan XX, Cai Y, Zhang XM, Luo XG, Cai H, Rose GM, Patrylo PR (2012) BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Exp Neurol 235:228–237. https://doi.org/10.1016/j.expneurol.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Valente SG, Naffah-Mazzacoratti MG, Pereira M, Silva I, Santos NF, Baracat EC, Cavalheiro EA, Amado D (2002) Castration in female rats modifies the development of the pilocarpine model of epilepsy. Epilepsy Res 49:181–188. https://doi.org/10.1016/s0920-1211(02)00024-4

    Article  CAS  PubMed  Google Scholar 

  36. Mejías-Aponte CA, Jiménez-Rivera CA, Segarra AC (2002) Sex differences in models of temporal lobe epilepsy: role of testosterone. Brain Res 944:210–218. https://doi.org/10.1016/s0006-8993(02)02691-4

    Article  PubMed  Google Scholar 

  37. Valente SG, Marques RH, Baracat EC, Cavalheiro EA, Naffah-Mazzacoratti MG, Amado D (2008) Effect of hormonal replacement therapy in the hippocampus of ovariectomized epileptic female rats using the pilocarpine experimental model. Epilepsy Res 82:46–56. https://doi.org/10.1016/j.eplepsyres.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  38. Galanopoulou AS, Alm EM, Velı́šková J (2003) Estradiol reduces seizure-induced hippocampal injury in ovariectomized female but not in male rats. Neurosci Lett 342:201–205. https://doi.org/10.1016/s0304-3940(03)00282-9

    Article  CAS  PubMed  Google Scholar 

  39. Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 88:594–604. https://doi.org/10.1016/j.bcp.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, Zhou X, Qin Z, Jia J, Zhen X (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142. https://doi.org/10.1016/j.bbi.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  41. Tonges L, Gunther R, Suhr M, Jansen J, Balck A, Saal KA, Barski E, Nientied T, Gotz AA, Koch JC, Mueller BK, Weishaupt JH, Sereda MW, Hanisch UK, Bahr M, Lingor P (2014) Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia 62:217–232. https://doi.org/10.1002/glia.22601

    Article  PubMed  Google Scholar 

  42. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis 71:280–291. https://doi.org/10.1016/j.nbd.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  43. Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 97:11534–11539. https://doi.org/10.1073/pnas.190206797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marchi N, Granata T, Freri E, Ciusani E, Ragona F, Puvenna V, Teng Q, Alexopolous A, Janigro D (2011) Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS ONE 6:e18200. https://doi.org/10.1371/journal.pone.0018200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A (2011) Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8:304–315. https://doi.org/10.1007/s13311-011-0039-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E, Heuschling P (2007) Notch signaling modulates the activation of microglial cells. Glia 55:1519–1530. https://doi.org/10.1002/glia.20553

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81601141, 81771407, 81671299 and 81601140) and Fundamental Research Funds for the Central Universities of Central South University (2019zzts1043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Xiao or Yi Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XL., Feng, L., Wang, ZX. et al. The Runx1/Notch1 Signaling Pathway Participates in M1/M2 Microglia Polarization in a Mouse Model of Temporal Lobe Epilepsy and in BV-2 Cells. Neurochem Res 45, 2204–2216 (2020). https://doi.org/10.1007/s11064-020-03082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03082-3

Keywords

Navigation