Skip to main content
Log in

A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction (MOR) realizes the conversion of solar and chemical energy into electric energy simultaneously. Here we report a Pt-MXene-TiO2 composite for highly efficient MOR via a photoactive cascaded electro-catalytic process. With light (UV and visible light) irradiation, MXene-TiO2 serves as the photo active centre (photoinduced hole) to activate the methanol molecules, while Pt particles are the active centre for the following electro-catalytic oxidation of those activated methanol molecules. Pt-MXene-TiO2 catalyst exhibits a lower onset potential (0.33 V) and an impressive mass activity of 2,750.42 mA·mg−1Pt under light illumination. It represents the highest MOR activity ever reported for photo-assisted electrocatalysts. Pt-MXene-TiO2 also shows excellent CO tolerance ability and stability, in which, after long-term (5,000 s) reaction, still keeps a high mass activity of 1,269.81 mA·mg−1Pt (62.66% of its initial activity). The photo-electro-catalytic system proposed in this work offers novel opportunities for exploiting photo-assisted enhancement of highly efficient and stable catalysts for MOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science1998, 280, 1735–1737.

    Article  CAS  Google Scholar 

  2. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanolfuel cells. Energy Environ. Sci.2011, 4, 2736–2753.

    Article  CAS  Google Scholar 

  3. Chu, Y. Y.; Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P. A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by β-cyclodextrin carbonization. Adv. Mater.2011, 23, 3100–3104.

    Article  CAS  Google Scholar 

  4. Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater.2014, 26, 5160–5165.

    Article  CAS  Google Scholar 

  5. Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4− clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci.2014, 7, 1939–1949.

    Article  CAS  Google Scholar 

  6. Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically active grapheneporphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc.2012, 134, 6707–6713.

    Article  CAS  Google Scholar 

  7. Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev.2014, 114, 12397–12429.

    Article  CAS  Google Scholar 

  8. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc.2012, 134, 13934–13937.

    Article  CAS  Google Scholar 

  9. Narayanamoorthy, B.; Datta, K. K. R.; Eswaramoorthy, M.; Balaji, S. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal.2014, 4, 3621–3629.

    Article  CAS  Google Scholar 

  10. Cao, X.; Wang, N.; Han, Y.; Gao, C. Z.; Xu, Y.; Li, M. X.; Shao, Y. H. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy2015, 12, 105–114.

    Article  CAS  Google Scholar 

  11. Yu, L. H.; Shao, Y.; Li, D. Z. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ.2017, 204, 216–223.

    Article  CAS  Google Scholar 

  12. Su, C. Y.; Hsueh, Y. C.; Kei, C. C.; Lin, C. T.; Perng, T. P. Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methanol. J. Phys. Chem. C2013, 117, 11610–11618.

    Article  CAS  Google Scholar 

  13. Wu, S. C.; He, J. P.; Zhou, J. H.; Wang, T.; Guo, Y. X.; Zhao, J. Q.; Ding, X. C. Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFCs. J. Mater. Chem.2011, 21, 2852–2854.

    Article  CAS  Google Scholar 

  14. Polo, A. S.; Santos, M. C.; De Souza, R. F. B.; Alves, W. A. Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J. Power Sources2011, 196, 872–876.

    Article  CAS  Google Scholar 

  15. Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem.2012, 22, 4025–4031.

    Article  CAS  Google Scholar 

  16. Drew, K.; Girishkumar, G.; Vinodgopal, K.; Kamat, P. V. Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B2005, 109, 11851–11857.

    Article  CAS  Google Scholar 

  17. Kim, S.; Hwang, S. J.; Choi, W. Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B.2005, 109, 24260–24267.

    Article  CAS  Google Scholar 

  18. Zhu, M. S.; Zhai, C. Y.; Sun, M. J.; Hu, Y. F.; Yan, B.; Du, Y. K. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation. Appl. Catal. B Environ.2017, 203, 108–115.

    Article  CAS  Google Scholar 

  19. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995, 95, 69–96.

    Article  CAS  Google Scholar 

  20. Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature2002, 417, 156–159.

    Article  Google Scholar 

  21. Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C2007, 111, 18288–18293.

    Article  CAS  Google Scholar 

  22. Zhang, H.; Chen, G.; Bahnemann, D. W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem.2009, 19, 5089–5121.

    Article  CAS  Google Scholar 

  23. Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc.2017, 139, 2035–2044.

    Article  CAS  Google Scholar 

  24. Katz, E.; Willner, B.; Willner, I. Light-controlled electron transfer reactions at photoisomerizable monolayer electrodes by means of electrostatic interactions: Active interfaces for the amperometric transduction of recorded optical signals. Biosens. Bioelectron.1997, 12, 703–719.

    Article  CAS  Google Scholar 

  25. Čejka, J.; Nachtigall, P.; Centi, G. New catalytic materials for energy and chemistry in transition. Chem. Soc. Rev.2018, 47, 8066–8071.

    Article  Google Scholar 

  26. Sudarsanam, P.; Zhong, R. Y.; Van Den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev.2018, 47, 8349–8402.

    Article  CAS  Google Scholar 

  27. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater.2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  28. Peng, C.; Wei, P.; Li, X. Y.; Liu, Y. P.; Cao, Y. H.; Wang, H. J.; Yu, H.; Peng, F.; Zhang, L. Y.; Zhang, B. S. et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy2018, 53, 97–107.

    Article  CAS  Google Scholar 

  29. Peng, C.; Yang, X. F.; Li, Y. H.; Yu, H.; Wang, H. J.; Peng, F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces2016, 8, 6051–6060.

    Article  CAS  Google Scholar 

  30. Peng, C.; Wang, H. J.; Yu, H.; Peng, F. (111) TiO2−x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull.2017, 89, 16–25.

    Article  CAS  Google Scholar 

  31. Xu, Y. J.; Wang, S.; Yang, J.; Han, B.; Nie, R.; Wang, J. X.; Wang, J. G.; Jing, H. W. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels. Nano Energy2018, 51, 442–450.

    Article  CAS  Google Scholar 

  32. An, X. Q.; Wang, W.; Wang, J. P.; Duan, H. Z.; Shi, J. T.; Yu, X. L. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys.2018, 20, 11405–11411.

    Article  CAS  Google Scholar 

  33. Haselmann, G. M.; Eder, D. Early-stage deactivation of Platinum-loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catal.2017, 7, 4668–4675.

    Article  CAS  Google Scholar 

  34. Cao, S. W.; Jiang, J.; Zhu, B. C.; Yu, J. G. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys.2016, 18, 19457–19463.

    Article  CAS  Google Scholar 

  35. Liu, Q. X.; Ai, L. H.; Jiang, J. MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A2018, 6, 4102–4110.

    Article  CAS  Google Scholar 

  36. Li, Z. S.; Ye, L. T.; Lei, F. L.; Wang, Y. L.; Xu, S. H.; Lin, S. Enhanced electro-photo synergistic catalysis of Pt(Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiation. Electrochim. Acta2016, 188, 450–460.

    Article  CAS  Google Scholar 

  37. Odetola, C.; Trevani, L. N.; Easton, E. B. Photo enhanced methanol electrooxidation: Further insights into Pt and TiO2 nanoparticle contributions. Appl. Catal. B Environ.2017, 210, 263–275.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National MCF Energy R&D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51725204, 21771132, 51972216, and 52041202), Natural Science Foundation of Jiangsu Province (Nos. BK20190041 and BK20190828), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu, Mingwang Shao or Zhenhui Kang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhou, Y., Liu, Y. et al. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 13, 2683–2690 (2020). https://doi.org/10.1007/s12274-020-2910-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2910-x

Keywords

Navigation