Skip to main content
Log in

Structure and Viscosity of Molten CaO-SiO2-FexO Slag During the Early Period of Basic Oxygen Steelmaking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

According to the composition variation during the initial period of basic oxygen steelmaking, ice-quenched samples of the CaO-SiO2-FexO system were prepared, and the viscosity and structure of molten slag were further analyzed by a rotary viscometer and Raman spectroscopy, respectively. The results showed that Si4+ existed as Q0, Q1, Q2 and Q3 units. The O2− ions led to the depolymerization of [SiO4] tetrahedrons from Q3 to Q0 units with increasing Ca/Fe ratio. For Fe3+ cations, two types of [FeO4] tetrahedron and [FeO6] octahedron coexisted in the molten slag, and coordination of Fe3+ transformed from tetrahedron to octahedron with the Ca/Fe ratio increasing to 3.18. Viscosity of molten slag showed a continuous decrease because of the simpler network. Moreover, to clarify the viscosity-structure relationship, the viscosity estimation equation applied to the CaO-SiO2-FexO-based system was established in terms of the deconvolution result of the melt structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.J. Parka and R.J. Fruehan: Metall. Mater. Trans. B, 1991, vol. 22, pp. 39-46.

    Google Scholar 

  2. K. Gu, N. Dogan and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2595-2606.

    Article  CAS  Google Scholar 

  3. J. Diao, P. Gu, D.M. Liu, L. Jiang, C. Wang and B. Xie: JOM, 2017, vol. 69, pp. 1745-50.

    Article  CAS  Google Scholar 

  4. G.H. Zhuang, K.C. Chou, Q.G. Xue and K.C. Mills: Metall. Mater. Trans. B, 2012, vol. 43, pp. 64-72.

    Article  CAS  Google Scholar 

  5. 5.G.H. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1530-37.

    Article  CAS  Google Scholar 

  6. G.H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44, pp. 5-12.

    Article  CAS  Google Scholar 

  7. P.C. Li and X.J. Ning: Metall. Mater. Trans. B, 2016, vol. 47, pp. 446-57.

    Google Scholar 

  8. C. Feng, J. Tang, L.H. Gao, Z.G. Liu and M. S. Chu: ISIJ Int., 2019, vol. 59, pp. 31-38.

    Article  CAS  Google Scholar 

  9. Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma and F. Yang: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 353-62.

    Article  CAS  Google Scholar 

  10. B.O. Mysen, D. Virgo and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690-710.

    CAS  Google Scholar 

  11. D. Virgo and B.O. Mysen: Phys. Chem. Mineral., 1985, vol. 12, pp. 65-76.

    Article  CAS  Google Scholar 

  12. Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2246-54.

    Article  CAS  Google Scholar 

  13. T.F. Cooney and S.K. Sharma: J. Non-Cryst. Solids, 1990, vol. 122, pp. 10-32.

    Article  CAS  Google Scholar 

  14. G.A. Waychunas, G.E. Brown, C.W. Ponader and W. E. Jacksom: Nature, 1988, vol. 332, pp. 251-53.

    Article  CAS  Google Scholar 

  15. W. Wu, Z.S. Zou and Z.H. Guo: J. Iron Steel Res., 2004, vol. 16, pp. 21-24.

    CAS  Google Scholar 

  16. M. Y. Zhu. Modern Metallurgical Technology, first ed., Beijing Industrial Press, Beijing, 2011, pp. 207-309.

    Google Scholar 

  17. Y.Z. Wang, Y. Zhang and W.H. Zhang. The Process and Equipment of Oxygen Top Blown Converter Steelmaking, second ed., Metallurgical Industry Press, Beijing, 1983, pp. 33-40.

    Google Scholar 

  18. S.Carić, L. Marinkov and J. Slivka: Phys. Stat. Sol., 1975, vol. 13, pp. 263-68.

    Article  Google Scholar 

  19. J.A. Duff: J. Non-Cryst. Solids, 1996, vol. 196, pp. 45-50.

    Article  Google Scholar 

  20. T. Osugi, S. Sukenaga, Y. Inatomi, Y. Gonda, N. Saito and K. Nakashima: ISIJ Int., 2013, vol. 53, pp. 185-90.

    Article  CAS  Google Scholar 

  21. B.O. Mysen: Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 2337-53.

    Article  CAS  Google Scholar 

  22. E.J. Jung and D.J. Min: Steel Research. Int., 2012, vol. 83, pp. 705-11.

    Article  CAS  Google Scholar 

  23. M. Taylor, G.E.B. Jr and P.M. Fenn: Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 109-17.

  24. F. A. Seifert, B. O. Mysen and D. Virgo: Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 1879-84.

    Article  CAS  Google Scholar 

  25. K. Seki and F. Oeters: Transactions of the iron and steel institute of Japan, 1984, vol. 24, pp. 445-54.

    Article  CAS  Google Scholar 

  26. M. Chen and B.J. Zhao: Metall. Mater. Trans. B, 2015, vol. 46, pp.577-84.

    Article  CAS  Google Scholar 

  27. F.Z. Ji, D. Sichen and S. Seetharaman: Metall. Mater. Trans. B, 1997, vol. 28, pp. 827-34.

    Article  CAS  Google Scholar 

  28. M. Suzuki and E. Jak: Proc. VIIII Int. Conf. Molten Slags Fluxes Salt, Beijing, 2012, pp. 68–83.

  29. B.O. Mysen, D. Virgo, W. J. Harrison and C. M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 900-14.

    CAS  Google Scholar 

  30. P.F. McMillan: Am. Mineral., 1984, vol. 69, pp. 622-44.

    CAS  Google Scholar 

  31. T. Furukawa, K.E. Fox and W.B. White: J. Chem. Phys., 1981, vol. 75, pp. 3226-37.

    Article  CAS  Google Scholar 

  32. F.L. Galeene: Solid State Commun., 1982, vol. 44, pp. 1037-40.

    Article  Google Scholar 

  33. B.O. Mysen, F.J. Ryerson and D. Virgo: Am. Mineral., 1980, vol. 65, pp. 1150-65.

    CAS  Google Scholar 

  34. G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton and F.M.B. Marques: J. Raman Spectrosc., 2007, vol. 38, pp. 21-33.

    Article  CAS  Google Scholar 

  35. R. Iordanova, Y. Dimitriev, V. Dimitrov and D. Klissurski: J. Non-Cryst. Solids, 1994, vol. 167, pp. 74-80.

    Article  CAS  Google Scholar 

  36. Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 758-65.

    Article  CAS  Google Scholar 

  37. R.M. Santos, D. Ling, A. Sarvaramini, M. Guo, J. Elsen, F. Larachi, G. Beaudoin, B. Blapain and T.V. Gerven: Chem. Eng. J., 2012, vol. 203, pp. 239-50.

    Article  CAS  Google Scholar 

  38. A.A. Francis: J. Am. Ceram. Soc., 2005, vol. 88, pp.1859-63.

    Article  CAS  Google Scholar 

  39. A.A. Francis: Mater. Res. Bull., 2006, vol. 41, pp. 1146-54.

    Article  CAS  Google Scholar 

  40. J.H. Park: J. Non-Cryst. Solids, 2012, vol. 358, pp.3096-3102.

    Article  CAS  Google Scholar 

  41. S. Sukenaga, N. Saito, K. Kawakami and K. Nakashima: ISIJ Int., 2006, vol. 46, pp. 352-58.

    Article  CAS  Google Scholar 

  42. J. Yang, J.Q. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2077-91.

    Article  CAS  Google Scholar 

  43. J. Qi, C. J. Liu and M.F. Jiang: J. Non-Cryst. Solids, 2017, vol. 475, pp. 101-07.

    Article  CAS  Google Scholar 

  44. D.D. Genova, S. Sicola, C. Ramano, A. Vona and S. Fanara: Chem. Geol., 2017, vol. 457, pp. 76-86.

    Article  CAS  Google Scholar 

  45. D. D. Genova, D. Morgavi, K. Hess, D. R. Neuville, N. Borovkov, D. Perugini and D. B. Digwell: J. Raman Spectroscopy, 2015, vol. 46, pp. 1235-1244.

    Article  CAS  Google Scholar 

  46. A.D. Muro, N. Mtrich, M. Mercier, D. Giordano, D. Massare and G. Montagnac: Chem. Geol., 2009, vol. 259, pp. 78-88.

    Article  CAS  Google Scholar 

  47. C. Rüssel and A. Wiedenroth: Chem. Geol., 2004, vol. 213, pp. 125-35.

    Article  CAS  Google Scholar 

  48. P. Vadász, M. Havlík and V. Danêk: Can. Metall. Quart., 2000, vol. 39, pp. 143-52.

    Article  Google Scholar 

  49. J.C. Bowker, C.H. Lupis, P.A. Flinn: Can. Metall. Quart., 1981, vol. 20, pp. 69-78.

    Article  CAS  Google Scholar 

  50. M. Nakamoto, J. Lee and T. Tanaka: ISIJ Int., 2005, vol. 45, pp. 651-56.

    Article  CAS  Google Scholar 

  51. M. Nakamoto, T. Tanaka, J. Lee and T. Usui: ISIJ Int., 2004, vol. 44, pp. 2115-19.

    Article  CAS  Google Scholar 

  52. M. Nakamoto, Y. Miyabayashi, L. Holappa and T. Tanaka: ISIJ Int., 2007, vol. 47, pp. 1409-15.

    Article  CAS  Google Scholar 

  53. H. Gaye and J. Welfringer: Proc. 2nd Int. Symp. Metall. Slags and Fluxes, TMA-AIME, Warrendale, PA, 1984, pp. 357–75.

  54. H. Gaye, J. Lehmann, T. Matsumiya and W. Yamada: 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Tokyo, 1992, pp. 103–08.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51674069, 51974075), the National Key R & D Program of China (Grant No. 2017YFC0805100), the Open Funds of State Key Laboratory of Metal Material for Marine Equipment and Application (SKLMEA-K201911) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. N182506001, N180725008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 31, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, Y., Zhao, X. et al. Structure and Viscosity of Molten CaO-SiO2-FexO Slag During the Early Period of Basic Oxygen Steelmaking. Metall Mater Trans B 51, 2021–2029 (2020). https://doi.org/10.1007/s11663-020-01888-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01888-8

Navigation