Skip to main content
Log in

Application of a stretched-exponential model for morphometric analysis of accelerated diffusion-weighted 129Xe MRI of the rat lung

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Diffusion-weighted, hyperpolarized 129Xe MRI is useful for the characterization of microstructural changes in the lung. A stretched exponential model was proposed for morphometric extraction of the mean chord length (Lm) from diffusion-weighted data. The stretched exponential model enables accelerated mapping of Lm in a single-breathhold using compressed sensing. Our purpose was to compare Lm maps obtained from stretched-exponential model analysis of accelerated versus unaccelerated diffusion-weighted 129Xe MRI data obtained from healthy/injured rat lungs.

Material and methods

Lm maps were generated using a stretched-exponential model analysis of previously acquired fully sampled diffusion-weighted 129Xe rat data (b values = 0 … 110 s/cm2) and compared to Lm maps generated from retrospectively undersampled data simulating acceleration factors of 7/10. The data included four control rats and five rats receiving whole-lung irradiation to mimic radiation-induced lung injury. Mean Lm obtained from the accelerated/unaccelerated maps were compared to histological mean linear intercept.

Results

Accelerated Lm estimates were similar to unaccelerated Lm estimates in all rats, and similar to those previously reported (< 12% different). Lm was significantly reduced (p < 0.001) in the irradiated rat cohort (90 ± 20 µm/90 ± 20 µm) compared to the control rats (110 ± 20 µm/100 ± 15 µm) and agreed well with histological mean linear intercept.

Discussion

Accelerated mapping of Lm using a stretched-exponential model analysis is feasible, accurate and agrees with histological mean linear intercept. Acceleration reduces scan time, thus should be considered for the characterization of lung microstructural changes in humans where breath-hold duration is short.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS, Wishnia A (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486):199–201

    CAS  PubMed  Google Scholar 

  2. Chen XJ, Moller HE, Chawla MS, Cofer GP, Driehuys B, Hedlund LW, Johnson GA (1999) Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo Part I: diffusion coefficient. Magn Reson Med 42(4):721–728

    CAS  PubMed  Google Scholar 

  3. Saam BT, Yablonskiy DA, Kodibagkar VD, Leawoods JC, Gierada DS, Cooper JD, Lefrak SS, Conradi MS (2000) MR imaging of diffusion of3He gas in healthy and diseased lungs. Magn Reson Med 44(2):174–179

    CAS  PubMed  Google Scholar 

  4. Salerno M, de Lange EE, Altes TA, Truwit JD, Brookeman JR, Mugler JP (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience 1. Radiology 222(1):252–260

    PubMed  Google Scholar 

  5. Thomen RP, Walkup LL, Roach DJ, Cleveland ZI, Clancy JP, Woods JC (2017) Hyperpolarized (129)Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 16(2):275–282

    CAS  PubMed  Google Scholar 

  6. Yablonskiy DA, Sukstanskii AL, Leawoods JC, Gierada DS, Bretthorst GL, Lefrak SS, Cooper JD, Conradi MS (2002) Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proc Natl Acad Sci USA 99(5):3111–3116

    CAS  PubMed  Google Scholar 

  7. Parra-Robles J, Ajraoui S, Deppe MH, Parnell SR, Wild JM (2010) Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry. J Magn Reson 204(2):228–238

    CAS  PubMed  Google Scholar 

  8. Parra-Robles J, Wild JM (2012) The influence of lung airways branching structure and diffusion time on measurements and models of short-range 3He gas MR diffusion. J Magn Reson 225:102–113

    CAS  PubMed  Google Scholar 

  9. Fichele S, Paley MN, Woodhouse N, Griffiths PD, Van Beek EJ, Wild JM (2004) Finite-difference simulations of 3He diffusion in 3D alveolar ducts: comparison with the "cylinder model". Magn Reson Med 52(4):917–920

    PubMed  Google Scholar 

  10. Sukstanskii AL, Yablonskiy DA (2008) In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background. J Magn Reson 190(2):200–210

    CAS  PubMed  Google Scholar 

  11. Yablonskiy DA, Sukstanskii AL (2017) Chapter 12—lung morphometry with HP Gas Diffusion MRI: From Theoretical Models to Experimental Measurements A2—Albert, Mitchell S. In: Hane FT (ed) Hyperpolarized and Inert Gas MRI. Academic Press, Boston, pp 183–209

    Google Scholar 

  12. Haefeli-Bleuer B, Weibel ER (1988) Morphometry of the human pulmonary acinus. Anat Rec 220(4):401–414

    CAS  PubMed  Google Scholar 

  13. Sukstanskii AL, Yablonskiy DA (2012) Lung morphometry with hyperpolarized 129Xe: theoretical background. Magn Reson Med 67(3):856–866

    CAS  PubMed  Google Scholar 

  14. Yablonskiy DA, Sukstanskii AL, Woods JC, Gierada DS, Quirk JD, Hogg JC, Cooper JD (1985) Conradi MS (2009) Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J Appl Physiol 107(4):1258–1265

    Google Scholar 

  15. Xu X, Boudreau M, Ouriadov A, Santyr GE (2012) Mapping of (3) He apparent diffusion coefficient anisotropy at sub-millisecond diffusion times in an elastase-instilled rat model of emphysema. Magn Reson Med 67(4):1146–1153

    PubMed  Google Scholar 

  16. Boudreau M, Xu X, Santyr GE (2013) Measurement of 129Xe gas apparent diffusion coefficient anisotropy in an elastase-instilled rat model of emphysema. Magn Reson Med 69(1):211–220

    CAS  PubMed  Google Scholar 

  17. Ruan W, Zhong J, Wang K, Wu G, Han Y, Sun X, Ye C, Zhou X (2017) Detection of the mild emphysema by quantification of lung respiratory airways with hyperpolarized xenon diffusion MRI. J Magn Reson Imaging 45(3):879–888

    PubMed  Google Scholar 

  18. Ouriadov A, Fox M, Hegarty E, Parraga G, Wong E, Santyr GE (2016) Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe Morphometry: Proof-of-concept demonstration in a rat model. Magn Reson Med 75(6):2421–2431

    PubMed  Google Scholar 

  19. Chen XJ, Hedlund LW, Moller HE, Chawla MS, Maronpot RR, Johnson GA (2000) Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion. Proc Natl Acad Sci USA 97(21):11478–11481

    CAS  PubMed  Google Scholar 

  20. Wang W, Nguyen NM, Yablonskiy DA, Sukstanskii AL, Osmanagic E, Atkinson JJ, Conradi MS, Woods JC (2011) Imaging lung microstructure in mice with hyperpolarized 3He diffusion MRI. Magn Reson Med 65(3):620–626

    PubMed  Google Scholar 

  21. Wang W, Nguyen NM, Guo J, Woods JC (2013) Longitudinal, noninvasive monitoring of compensatory lung growth in mice after pneumonectomy via (3)He and (1)H magnetic resonance imaging. Am J Respir Cell Mol Biol 49(5):697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50(4):727–734

    PubMed  Google Scholar 

  23. Berberan-Santos MN, Bodunov EN, Valeur B (2005) Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem Phys 315(1–2):171–182

    CAS  Google Scholar 

  24. Abascal J, Desco M, Parra-Robles J (2018) Incorporation of prior knowledge of signal behavior into the reconstruction to accelerate the acquisition of diffusion MRI data. IEEE Trans Med Imaging 37(2):547–556

    PubMed  Google Scholar 

  25. Parra-Robles J, Marshall H, Hartley RA, Brightling CE, Wild JM (2014) Quantification of lung microstructure in asthma using a 3He fractional diffusion approach [abstract]. ISMRM 22nd Annual Meeting, p 3529

  26. Ouriadov A, Guo F, McCormack DG, Parraga G (2020) Accelerated 129Xe MRI morphometry of terminal airspace enlargement: feasibility in volunteers and those with alpha-1 antitrypsin deficiency. Magn Reson Med 84(1):416–426

    CAS  PubMed  Google Scholar 

  27. Chan HF, Collier GJ, Weatherley ND, Wild JM (2019) Comparison of in vivo lung morphometry models from 3D multiple b value (3) He and (129) Xe diffusion-weighted MRI. Magn Reson Med 81(5):2959–2971

    PubMed  Google Scholar 

  28. Chan HF, Stewart NJ, Parra-Robles J, Collier GJ, Wild JM (2017) Whole lung morphometry with 3D multiple b value hyperpolarized gas MRI and compressed sensing. Magn Reson Med 77(5):1916–1925

    CAS  PubMed  Google Scholar 

  29. Ouriadov A, Lessard E, Sheikh K, Parraga G, Canadian Respiratory Research N (2018) Pulmonary MRI morphometry modeling of airspace enlargement in chronic obstructive pulmonary disease and alpha-1 antitrypsin deficiency. Magn Reson Med 79(1):439–448

  30. Westcott A, Guo F, Parraga G, Ouriadov A (2019) Rapid single-breath hyperpolarized noble gas MRI-based biomarkers of airspace enlargement. J Magn Reson Imaging 49(6):1713–1722

    PubMed  Google Scholar 

  31. Ruppert K, Quirk JD, Mugler JPI, Altes TA, Wang C, Miller GW, Ruset IC, Mata JF, Hersman FW, Yablonskiy DA (2012) Lung morphometry using hyperpolarized Xenon-129: preliminary experience [abstract]. ISMRM 20th Annual Meeting, Melbourne

  32. Ouriadov AV, Lam WW, Santyr GE (2009) Rapid 3-D mapping of hyperpolarized 3He spin-lattice relaxation times using variable flip angle gradient echo imaging with application to alveolar oxygen partial pressure measurement in rat lungs. MAGMA 22(5):309–318

    CAS  PubMed  Google Scholar 

  33. Hersman FW, Ruset IC, Ketel S, Muradian I, Covrig SD, Distelbrink J, Porter W, Watt D, Ketel J, Brackett J, Hope A, Patz S (2008) Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 15(6):683–692

    PubMed  PubMed Central  Google Scholar 

  34. Fox MS, Ouriadov A, Santyr GE (2014) Comparison of hyperpolarized (3)He and (129)Xe MRI for the measurement of absolute ventilated lung volume in rats. Magn Reson Med 71(3):1130–1136

    CAS  PubMed  Google Scholar 

  35. Kirby M, Svenningsen S, Owrangi A, Wheatley A, Farag A, Ouriadov A, Santyr GE, Etemad-Rezai R, Coxson HO, McCormack DG, Parraga G (2012) Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265(2):600–610

    PubMed  Google Scholar 

  36. Goldstein T, Osher S (2009) The Split Bregman Method for L1-Regularized Problems. SIAM J Imaging Sci 2(2):323–343

    Google Scholar 

  37. Goodson BM, Ranta K, Skinner JG, Coffey AM, Nikolaou P, Gemeinhardt M, Anthony D, Stephenson S, Hardy S, Owers-Bradley J, Barlow MJ, Chekmenev EY (2017) Chapter 2—the physics of hyperpolarized gas MRI A2—Albert, Mitchell S. In: Hane FT (ed) Hyperpolarized and Inert gas MRI. Academic Press, Boston, pp 23–46

    Google Scholar 

  38. Norquay G, Collier GJ, Rao M, Stewart NJ, Wild JM (2018) 129Xe-Rb spin-exchange optical pumping with high photon efficiency. Phys Rev Lett 121(15):153201

    CAS  PubMed  Google Scholar 

  39. Dregely I, Ruset IC, Wiggins G, Mareyam A, Mugler JP 3rd, Altes TA, Meyer C, Ruppert K, Wald LL, Hersman FW (2013) 32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon-129 lung imaging. Magn Reson Med 70(2):576–583

    CAS  PubMed  Google Scholar 

  40. Chang YV, Quirk JD, Yablonskiy DA (2015) In vivo lung morphometry with accelerated hyperpolarized 3He diffusion MRI: a preliminary study. Magn Reson Med 73(4):1609–1614

    CAS  PubMed  Google Scholar 

  41. De Zanche N, Chhina N, Teh K, Randell C, Pruessmann KP, Wild JM (2008) Asymmetric quadrature split birdcage coil for hyperpolarized 3He lung MRI at 1.5T. Magn Reson Med 60(2):431–438

  42. Zanette B, Santyr G (2019) Accelerated interleaved spiral-IDEAL imaging of hyperpolarized (129) Xe for parametric gas exchange mapping in humans. Magn Reson Med 82(3):1113–1119

    PubMed  Google Scholar 

  43. Doganay O, Thind K, Wade T, Ouriadov A, Santyr GE (2015) Transmit-only/receive-only radiofrequency coil configuration for hyperpolarized129Xe MRI of rat lungs. Concepts Magn Resonan Part B Magn Resonan Eng 45(3):115–124

    CAS  Google Scholar 

  44. Knudsen L, Weibel ER, Gundersen HJ, Weinstein FV, Ochs M (2010) Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach. J Appl Physiol 108(2):412–421

    PubMed  Google Scholar 

  45. Parra-Robles J, Ajraoui S, Deppe M, Parnell S, Wild J (2010) Experimental investigation and numerical simulation of 3 He gas diffusion in simple geometries: Implications for analytical models of 3 He MR lung morphometry. J Magn Reson 204(2):228–238

    CAS  PubMed  Google Scholar 

  46. Paulin GA, Ouriadov A, Lessard E, Sheikh K, McCormack DG, Parraga G (2015) Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers. Physiol Rep 3(10):e12583

    PubMed  PubMed Central  Google Scholar 

  47. Ouriadov A, Farag A, Kirby M, McCormack DG, Parraga G, Santyr GE (2013) Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease. Magn Reson Med 70(6):1699–1706

    CAS  PubMed  Google Scholar 

  48. Chan HF, Stewart NJ, Norquay G, Collier GJ, Wild JM (2018) 3D diffusion-weighted (129) Xe MRI for whole lung morphometry. Magn Reson Med 79(6):2986–2995

    PubMed  Google Scholar 

  49. Zhang H, Xie J, Xiao S, Zhao X, Zhang M, Shi L, Wang K, Wu G, Sun X, Ye C, Zhou X (2018) Lung morphometry using hyperpolarized (129) Xe multi-b diffusion MRI with compressed sensing in healthy subjects and patients with COPD. Med Phys 45(7):3097–3108

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Canadian Institutes for Health Research (Operating grant MOP-123431), Ontario Research Fund (Ontario Preclinical Imaging Consortium) and the Natural Sciences and Engineering Research Council, and the Alpha-1 Foundation (USA). We thank J. F. P. J. Abascal for providing the MatLab code for image reconstruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei V. Ouriadov.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. This article contains studies with animals, where all procedures followed animal care protocols approved by Western University (ACVS) and were consistent with procedures recommended by the Canadian Council on Animal Care (CCAC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10334_2020_860_MOESM1_ESM.tif

Supplementary material 3 (TIF 53 kb) Supporting Figure S1: Relationships for mean linear intercept (cylinder model) with mean diffusion length specific to airway (stretched exponential model). Relationship for LmD = mean diffusion length with Lm and histological mean-linear-intercept for irradiated (solid squares) and control (solid circles) (R = 0.94; y = 1.8x – 150 µm; p < 0.001) rats. Open squares and open circles show histological mean-linear-intercept estimates obtained for irradiated (I4 and I5) and control (C3 and C4) animals (Table 1). Histological data (MRI-based LmD vs histological mean-linear-intercept) are shown for demonstration purposes only. MLI = histological mean linear intercept

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouriadov, A.V., Fox, M.S., Lindenmaier, A.A. et al. Application of a stretched-exponential model for morphometric analysis of accelerated diffusion-weighted 129Xe MRI of the rat lung. Magn Reson Mater Phy 34, 73–84 (2021). https://doi.org/10.1007/s10334-020-00860-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00860-6

Keywords

Navigation