Skip to main content
Log in

Heat transfer analysis of Cu–Al2O3 hybrid nanofluid with heat flux and viscous dissipation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Current research explores the influence of Cu–Al2O3 MHD hybrid nanofluid on heat conveyance and flow in a permeable channel with heat flux and viscous dissipation effects. As in hybrid nanofluid, \(\phi_{1}\) and \(\phi_{2}\) are used for volume fraction of Cu–Al2O3. We take \(\phi_{1} = 0.2\) and \(\phi_{2}\) of different ranges. A Newtonian fluid has been used as a base fluid. Appropriate mathematical modeling has been carried out, and the governing PDEs have been converted into ODEs by applying appropriate similarity transformations. Computations have been performed analytically by exercising homotopy analysis methodology. The influence of several novel parameters on flow fields has been discussed graphically. In addition, plots for skin friction and local Nusselt number for various values of the involved parameters have been drawn to analyze flow and conveyance of heat at the surface. It has been concluded that the fluid’s velocity increases, while the temperature decreases for increasing volume fraction. Temperature of the fluid has opposite behavior for cases of heat source/sink. It has also been found that viscous dissipation enhances the fluid temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

T :

Fluid temperature (K)

T w :

Surface temperature (K)

T H :

Upper wall temperature (K)

c p :

Specific heat (J kg k−1)

C f :

Skin friction coefficient

P:

Fluid pressure (Pa)

Nu:

Local Nusselt number

Pr:

Prandtl number

Ec:

Eckert number

Q o :

Heat flux parameter

M :

Hartmann number

u, v :

x, y velocity component (m s−1)

Re:

Reynolds number

B o :

Strength of magnetic field (T)

\(\phi_{1} ,\phi_{2}\) :

Nanoparticles volume fraction

\(\rho\) :

Fluid density (kg m−3)

\(\psi\) :

Stream function (m2 s−1)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\upsilon\) :

Kinematic viscosity (m2 s−1)

\(\sigma\) :

Electric conductivity (Sm−1)

\(\kappa\) :

Thermal conductivity (W m−1 k−1)

\(\gamma\) :

Dimensionless heat flux parameter

hnf:

Hybrid nanofluid

nf:

Nanofluid

f:

Base fluid

s1 :

First solid nanoparticle

s2 :

Second nanoparticle

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, development and applications of non-Newtonian flows. Argonne National Lab. 1995; vol. 66, p. 99–105.

  2. Maxwell JC. Treatise on electricity and magnetism. Oxford: Clarendon Press; 1873. p. 1.

    Google Scholar 

  3. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivity of ethylene glycol—based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:7180–720.

    Google Scholar 

  4. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    CAS  Google Scholar 

  5. Chopkar M, Das PK, Manna I. Synthesis and characterization of a nanofluid for advanced heat transfer applications. Scr Mater. 2006;55:549–52.

    CAS  Google Scholar 

  6. Saidur R, Leong KY, Muhammad HA. A review on applications and challenges of nanofluids. Renew Sustain Ener Rev. 2011;15:1646–68.

    CAS  Google Scholar 

  7. Hussain ST, Khan ZH, Nadeem S. Water driven flow of carbon nanotubes in a rotating channel. J Mol Liq. 2016;214:136–44.

    CAS  Google Scholar 

  8. Ijaz S, Nadeem S. A balloon model examination with impulsion of Cu-nanoparticles as drug agent through stenosed tapered elastic artery. J Appl Fluid Mech. 2017;10:1773–83.

    Google Scholar 

  9. Ellahi R, Zeeshan A, Hussain F, Abbas T. Study of shiny film coating on multi-fluid flows of a rotating disk suspended with nano-sized silver and gold particles: a comparative analysis. Coatings. 2018;8:422.

    Google Scholar 

  10. Selimefendigil F, Oztop HF. Magnetic field effects on the forced convection of CuO–water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146–147:9–24.

    Google Scholar 

  11. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    CAS  Google Scholar 

  12. Ali A, Shah Z, Mumraiz S, Kumam P, Awais M. Entropy generation on MHD peristaltic flow of Cu–water nanofluid with slip conditions. Heat Trans Asian-Res. 2019;48:4301–19.

    Google Scholar 

  13. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137:267–87.

    CAS  Google Scholar 

  14. Khan AU, Saleem S, Nadeem S, Alderremy AA. Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions. Physica A. 2020. https://doi.org/10.1016/j.physa.2019.123920.

    Article  Google Scholar 

  15. Saleem S, Qasim M, Alderremy A, Noreen S. Heat transfer enhancement using different shapes of Cu nanoparticles in the flow of water based nanofluid. Phys Scr. 2020;95:055209.

    CAS  Google Scholar 

  16. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asghari A, Akbari OL. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2020;140:1121–45.

    CAS  Google Scholar 

  17. Selimefendigil F, Oztop HF. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. Int Commun Heat Mass Transf. 2020;113:104–551.

    Google Scholar 

  18. Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.

    CAS  Google Scholar 

  19. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluid using two step method and its thermo physical properties. Collides Surf A Physicochem Eng Asp. 2011;388:41–8.

    CAS  Google Scholar 

  20. Nawaz M, Nazir U, Saleem S, Alharbi SO. An enhancement of thermal performance of ethylene glycol by nano and hybrid nanoparticles. Physica A. 2020;551:124527.

    CAS  Google Scholar 

  21. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2017;82:97–102.

    Google Scholar 

  22. Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Res Phys. 2017;7:2317–24.

    Google Scholar 

  23. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids, a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  24. Ellahi R, Hussain F, Abbas SA, Sarafraz MM, Goodarzi M, Shadloo MS. Study of two-phase Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip. Inventions. 2020;5:6.

    Google Scholar 

  25. Ali A, Saleem S, Mumraiz S, Awais M, Saleem A, Khan Marwat DN. Numerical investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffery material. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09648-1.

    Article  Google Scholar 

  26. Mumraiz S, Ali A, Awais M, Shutaywi M. Shah Entropy generation in electrical magnetohydrodynamic flow of Al2O3–Cu/H2O hybrid nanofluid with non-uniform heat flux. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09603-0.

    Article  Google Scholar 

  27. Selimefendigill F, Oztop HF. Impact of a rotating cone on forced convection of Ag–MgO\water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09348-w.

    Article  Google Scholar 

  28. Fersadou I, Kahalerras H, El Ganaoui M. MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel. Comput Fluids. 2015;121:164–79.

    Google Scholar 

  29. Raza J, Rohni AM, Omar Z. MHD flow and heat transfer of Cu-water nanofluid in a semiporous channel with stretching walls. Int J Heat Mass Transf. 2016;103:336–40.

    CAS  Google Scholar 

  30. Falade JA, Ukaegbu JC, Egere AC, Adesanya SO. MHD oscillatory flow through a porous channel saturated with porous medium. Alex Eng J. 2017;56:147–52.

    Google Scholar 

  31. Irfan M, Khan M, Khan WA. Numerical analysis of unsteady 3D flow of Carreau nanofluid with variable thermal conductivity and heat source/sink. Res Phys. 2017;7:3315–24.

    Google Scholar 

  32. Khan SU, Shehzad SA, Rauf A, Ali N. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects. Res Phys. 2018;8:1223–31.

    Google Scholar 

  33. Gholamalipour P, Siavashi M, Doranehgard MH. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu–water nanofluid. Int J Heat Mass Transf. 2019;109:104367.

    CAS  Google Scholar 

  34. Njaneand WNM, Makinde OD. MHD nanofluid flow over a permeable vertical plate with convective heating. J Comput Theor Nanosci. 2014;11:667–75.

    Google Scholar 

  35. Elazem NYA, Ebaid A, Aly EH. Radiation effect of MHD on Cu–water and Ag–water nanofluids flow over stretching sheet, numerical study. J Appl Comput Math. 2015;4:1000235–43.

    Google Scholar 

  36. Loganthan P, Chan PN, Ganesan P. Radiation effects on an unsteady MHD natural convective flow of a nanofluid past a vertical plate. Therm Sci. 2015;19:1037–50.

    Google Scholar 

  37. Naveed M, Abbas Z, Sajid M. Hydromagnetic flow over an unsteady curved stretching surface. Eng Sci Technol Int J. 2016;19:841–5.

    Google Scholar 

  38. Farooq M, Khan MI, Waqas M, Hayat T, Alsaedi A. MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq. 2016;221:1097–103.

    CAS  Google Scholar 

  39. Selimefendigil F, Oztop HF. Forced convection in a branching channel with partly elastic walls and inner L-shaped conductive obstacle under the influence of magnetic field. Int J Heat Mass Transf. 2019;144:118–598.

    Google Scholar 

  40. Chen CH. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet. J Non-New Fluid Mech. 2006;135:128–35.

    CAS  Google Scholar 

  41. Jaber KK. Effects of viscous dissipation and joule heating on MHD flow of a fluid with variable properties past a stretching vertical plate. Eur Sci J. 2014;10:383–93.

    Google Scholar 

  42. Saleem S, Nadeem S, Rashidi MM, Raju CSK. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Micro Sys Technol. 2019;25:683–9.

    Google Scholar 

  43. Muhammad T, Hayat T, Shehzad SA, Alsaedi A. Viscous dissipation and joule heating effects in MHD 3D flow with heat and mass fluxes. Results Phys. 2018;8:365–71.

    Google Scholar 

  44. Chereches EI, Minea AA. Electrical conductivity of new nanoparticle enhanced fluids, an experimental study. Nanomaterials. 2019;9:1228.

    CAS  PubMed Central  Google Scholar 

  45. Raza J, Rohni AM, Omar Z, Awais M. Rheology of the Cu–water nanofluid in porous channel with heat transfer: multiple solutions. Physica E. 2016;86:248–52.

    Google Scholar 

  46. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component system. Ind Eng Chem Fundam. 1962;1:187–91.

    CAS  Google Scholar 

  47. Das S, Jana RN. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alex Eng J. 2015;54:55–64.

    Google Scholar 

  48. Nazari S, Ellahi R, Sarfraz MM, Safaei RM, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08841-1.

    Article  Google Scholar 

  49. Minea AA, Luciu RS. Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid. 2012;13:977–85.

    CAS  Google Scholar 

  50. Nawaz M. Role of hybrid nanoparticles in the thermal performance of Sutterby fluid, the ethylene glycol. Physica A. 2020;537:122447–510.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Noreen, A., Saleem, S. et al. Heat transfer analysis of Cu–Al2O3 hybrid nanofluid with heat flux and viscous dissipation. J Therm Anal Calorim 143, 2367–2377 (2021). https://doi.org/10.1007/s10973-020-09910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09910-6

Keywords

Navigation