Skip to main content
Log in

Synthesis and characterization of ((La1-xGdx)2Zr2O7; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) nanoparticles for advanced TBCs

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Multicomponent rare-earth oxide-doped zirconia-based thermal barrier coatings (TBCs) are attractive alternatives for yttria-stabilized zirconia (YSZ) in advanced TBC applications. In this study, a zirconia-based nanopowder doped by multiple rare-earth oxides ((La1-xGdx)2Zr2O7; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) was synthesized using sol-gel and calcination method. The product was then characterized by X-ray diffraction (XRD), simultaneous thermal analysis (STA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and dilatometric test. According to STA results, the proper calcination temperature of (La1-xGdx)2Zr2O7 nanopowders could be considered > 800 °C. The results indicated that Gd2Zr2O7 exhibits a defect fluorite-type structure, and with the incorporation of larger La3+, it transformed into an ordered pyrochlore-type structure. The microstructure and morphology of the product were studied by field emission scanning electron microscopy (FESEM), revealing the formation of (La1-xGdx)2Zr2O7 nanoparticles with the mean size below 100 nm. Also, the thermal expansion coefficient of (La1-xGdx)2Zr2O7 nanoparticles was determined 8–12.5 × 10−6 K−1 at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bakan, E., Vaßen, R.: Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J Therm Spray Technol. 26, 992–1010 (2017)

    CAS  Google Scholar 

  2. Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat Mater. 15, 804–809 (2016)

    CAS  Google Scholar 

  3. Xu, H., Wu, J.: New materials, technologies and processes in thermal barrier coatings. In: Thermal Barrier Coatings, pp. 317–328. Woodhead Publishing, Cambridge (2011)

  4. Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D.: Overview on advanced thermal barrier coatings. Surf Coat Technol. 205, 938–942 (2010)

    Google Scholar 

  5. Keyvani, A., Bahamirian, M., Kobayashi, A.: Effect of sintering rate on the porous microstructural, mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling. J Alloys Compd. 727, 1057–1066 (2017)

    CAS  Google Scholar 

  6. Keyvani, A., Bahamirian, M.: Hot corrosion and mechanical properties of nanostructured Al2O3/CSZ composite TBCs. Surf Eng. 33, 433–443 (2017)

    CAS  Google Scholar 

  7. Keyvani, A., Bahamirian, M.: Oxidation resistance of Al2O3-nanostructured/CSZ composite compared to conventional CSZ and YSZ thermal barrier coatings. Mater Res Express. 3, 105047 (2016)

    Google Scholar 

  8. Bahamirian, M., Khameneh Asl, S.: An investigation on effect of bond coat replacement on hot corrosion properties of thermal barrier coatings. Iran J Mater Sci Eng. 10, 12–21 (2013)

    CAS  Google Scholar 

  9. Bahamirian, M., Hadavi, S., Farvizi, M., Rahimipour, M., Keyvani, A.: Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100°C and 1300°C for advanced TBC applications. Ceram Int. 45, 7344–7350 (2019)

    CAS  Google Scholar 

  10. Bahamirian, M., Hadavi, S., Rahimipour, M., Farvizi, M., Keyvani, A.: Synthesis and characterization of yttria-stabilized zirconia nanoparticles doped with ytterbium and gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3. Metall Mater Trans A. 49, 2523–2532 (2018)

    CAS  Google Scholar 

  11. Clarke, D., Levi, C.: Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 33, 383–417 (2003)

    CAS  Google Scholar 

  12. Vassen, R., Cao, X., Tietz, F., Basu, D., Stöver, D.: Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc. 83, 2023–2028 (2000)

    CAS  Google Scholar 

  13. Stiger, M., Yanar, N., Topping, M., Pettit, F., Meier, G.: Thermal barrier coatings for the 21st century. Z Met. 90, 1069–1078 (1999)

    CAS  Google Scholar 

  14. Narita, T., Izumi, T., Nishimoto, T., Shibata, Y., Thosin, K.Z., Hayashi, S.: Advanced coatings on high temperature applications. In: Materials science forum, Trans Tech Publications Ltd, 522, 1-14, (2006)

  15. Schulz, U., Leyens, C., Fritscher, K., Peters, M., Saruhan-Brings, B., Lavigne, O., et al.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp Sci Technol. 7, 73–80 (2003)

    CAS  Google Scholar 

  16. Xiang, J., Chen, S., Huang, J., Zhang, H., Zhao, X.: Phase structure and thermophysical properties of co-doped La2Zr2O7 ceramics for thermal barrier coatings. Ceram Int. 38, 3607–3612 (2012)

    CAS  Google Scholar 

  17. Popov, V., Zubavichus, Y.V., Menushenkov, A., Yaroslavtsev, A., Kulik, E., Petrunin, V., et al.: Short-and long-range order balance in nanocrystalline Gd2Zr2O7 powders with a fluorite-pyrochlore structure. Russ J Inorg Chem. 59, 279–285 (2014)

    CAS  Google Scholar 

  18. Wan, C., Pan, W., Xu, Q., Qin, Y., Wang, J., Qu, Z., et al.: Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: experiment and theoretical model. Phys Rev B. 74, 144109 (2006)

    Google Scholar 

  19. Bahamirian, M., Hadavi, S., Farvizi, M., Rahimipour, M., Keyvani, A.: Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating. Surf Coat Technol. 360, 1–12 (2019)

    CAS  Google Scholar 

  20. Liu, Z.-G., Zhang, W.-H., Ouyang, J.-H., Zhou, Y.: Novel double-ceramic-layer (La0.8Eu0.2)2Zr2O7/YSZ thermal barrier coatings deposited by plasma spraying. Ceram Int. 40, 11277–11282 (2014)

    CAS  Google Scholar 

  21. Bakan, E., Mack, D.E., Mauer, G., Vassen, R.: Gadolinium zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc. 97, 4045–4051 (2014)

    CAS  Google Scholar 

  22. Cao, X., Vassen, R., Tietz, F., Stoever, D.: New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides. J Eur Ceram Soc. 26, 247–251 (2006)

    CAS  Google Scholar 

  23. Cao, X., Vassen, R., Jungen, W., Schwartz, S., Tietz, F., Stöver, D.: Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc. 84, 2086–2090 (2001)

    CAS  Google Scholar 

  24. Vassen, R., Stoever, D.: Conventional and new materials for thermal barrier coatings. In: Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, pp. 199–216. Springer, Dordrecht (2001)

  25. Keyvani, A., Mostafavi, N., Bahamirian, M., Sina, H., Rabiezadeh, A.: Synthesis and phase stability of zirconia-lanthania-ytterbia-yttria nanoparticles; a promising advanced TBC material. Asian Ceram Soc. 8, 336–344 (2020)

  26. Cao, X., Vassen, R., Stoever, D.: Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 24, 1–10 (2004)

    CAS  Google Scholar 

  27. Bahamirian, M., Hadavi, S., Farvizi, M., Keyvani, A., Rahimipour, M.: Thermal durability of YSZ/nanostructured Gd2Zr2O7 TBC undergoing thermal cycling. Oxid Met. 92, 401–421 (2019)

    CAS  Google Scholar 

  28. Lang, M., Zhang, F., Zhang, J., Wang, J., Lian, J., Weber, W.J., et al.: Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl Instrum Methods Phys Res, Sect B. 268, 2951–2959 (2010)

    CAS  Google Scholar 

  29. Kennedy, B.J., Zhou, Q., Avdeev, M.: Neutron diffraction studies of Gd2Zr2O7 pyrochlore. J Solid State Chem. 184, 1695–1698 (2011)

    CAS  Google Scholar 

  30. Sedmidubský, D., Beneš, O., Konings, R.: High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores. J Chem Thermodyn. 37, 1098–1103 (2005)

    Google Scholar 

  31. Kong, L., Karatchevtseva, I., Gregg, D.J., Blackford, M.G., Holmes, R., Triani, G.: Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. J Eur Ceram Soc. 33, 3273–3285 (2013)

    CAS  Google Scholar 

  32. Gao, L., Zhu, H., Wang, L., Ou, G.: Hydrothermal synthesis and photoluminescence properties of Gd2Zr2O7: Tb3+ phosphors. Mater Lett. 65, 1360–1362 (2011)

    CAS  Google Scholar 

  33. Qian, Z., Wei-min, M., Lei, M., Quan, L., Xiang, Z., Xiang, C.: Preparation of Gd2Zr2O7 nanoparticles by hydrothermal-solid state method. J Synth Cryst. 5, 15 (2013)

  34. Chen, S., Liu, X., Shu, X., Yang, J., Wang, L., Zhang, K., et al.: Rapid synthesis and chemical durability of Gd2Zr2-xCexO7 via SPS for nuclear waste forms. Ceram Int. 44, 20306–20310 (2018)

    CAS  Google Scholar 

  35. Brykała, U., Diduszko, R., Jach, K., Jagielski, J.: Hot pressing of gadolinium zirconate pyrochlore. Ceram Int. 41, 2015–2021 (2015)

    Google Scholar 

  36. Liu, Z.-G., Ouyang, J.-H., Zhou, Y.: Preparation and thermophysical properties of (NdxGd1−x)2Zr2O7 ceramics. J Mater Sci. 43, 3596–3603 (2008)

    CAS  Google Scholar 

  37. Rao, K.K., Banu, T., Vithal, M., Swamy, G., Kumar, K.R.: Preparation and characterization of bulk and nano particles of La2Zr2O7 and Nd2Zr2O7 by sol–gel method. Mater Lett. 54, 205–210 (2002)

    Google Scholar 

  38. Wang, S., Li, W., Wang, S., Chen, Z.: Synthesis of nanostructured La2Zr2O7 by a non-alkoxide sol–gel method: from gel to crystalline powders. J Eur Ceram Soc. 35, 105–112 (2015)

    Google Scholar 

  39. Ma, L., Ma, W.M., Sun, X.D.: Preparation and characterization of Gd2Zr2O7 nanoparticles via the citric acid chelating agent method. In: Engineering Materials, Trans Tech Publications Ltd, 544, 8–12 (2013)

  40. Bhattacharya, A., Hartridge, A., Mallick, K., Woodhead, J.: Preparation and characterization of Ln2Zr2O7 microspheres by an inorganic sol-gel route. J Mater Sci. 29, 6076–6078 (1994)

    CAS  Google Scholar 

  41. Lee, Y., Sheu, H., Deng, J., Kao, H.-C.: Preparation and fluorite–pyrochlore phase transformation in Gd2Zr2O7. J Alloys Compd. 487, 595–598 (2009)

    CAS  Google Scholar 

  42. Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., Kumari, B.S.: X-ray analysis by Williamson-hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng. 4, (2014)

  43. Wang, J., Dong, X., Cui, Q., Liu, G., Yu, W.: Preparation and characterization of polycrystalline La2Zr2O7 ultrafine fibres via electrospinning. J Nanosci Nanotechnol. 11, 2514–2519 (2011)

    CAS  Google Scholar 

  44. Georgieva, I., Danchova, N., Gutzov, S., Trendafilova, N.: DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials. J Mol Model. 18, 2409–2422 (2012)

    CAS  Google Scholar 

  45. Kim, S.-J., Lee, S.-M., Oh, Y.-S., Kim, H.-T., Jang, B.-K., Kim, S., et al.: Characteristics of bulk and coating in Gd2−xZr2+xO7+0.5x (x= 0.0, 0.5, 1.0) system for thermal barrier coatings. J Korean Ceram Soc. 53, 652–658 (2016)

    CAS  Google Scholar 

  46. Tong, Y., Wang, Y., Yu, Z., Wang, X., Yang, X., Lu, L.: Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. Mater Lett. 62, 889–891 (2008)

    CAS  Google Scholar 

  47. Kong, L., Karatchevtseva, I., Gregg, D.J., Blackford, M.G., Holmes, R., Triani, G.: A novel chemical route to prepare La2Zr2O7 pyrochlore. J Am Ceram Soc. 96, 935–941 (2013)

    CAS  Google Scholar 

  48. Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons (2004)

  49. Wang, S., Li, W., Wang, S., Jiang, J., Chen, Z.: Synthesis of well-defined hierarchical porous La2Zr2O7 monoliths via non-alkoxide sol–gel process accompanied by phase separation. Microporous Mesoporous Mater. 221, 32–39 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Keyvani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyvani, A., Mahmoudinezhad, P., Jahangiri, A. et al. Synthesis and characterization of ((La1-xGdx)2Zr2O7; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) nanoparticles for advanced TBCs. J Aust Ceram Soc 56, 1543–1550 (2020). https://doi.org/10.1007/s41779-020-00500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00500-1

Keywords

Navigation