Skip to main content
Log in

Copper pyrovanadate electrodes prepared by combustion synthesis: evaluation of photoelectroactivity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Photoelectrodegradation of dyes using semiconductors under visible light is currently a major research topic. In this work, copper pyrovanadate (Cu2V2O7) was obtained by combustion synthesis, and the influence of different fuels such as citric acid, glycine, and urea on the properties of this semiconductor was evaluated. Using X-ray diffraction analysis, it was observed that the β-Cu2V2O7 phase was formed in greater proportions for the three samples, especially with the use of urea. On the other hand, the formation of the α-Cu2V2O7 phase was not verified when glycine was used, which can be associated with the occurrence of a higher flame temperature during the combustion step (1507 °C). Among the photoelectrodes obtained, the ITO/Cu2V2O7-Urea presented the best photoelectrocatalytic performance, with a greater discoloration rate constant of methylene blue dye (kobs = 28.61 × 10−3 min−1) and less charge transfer resistance (42.75 Ω), while in the other photoelectrodes, the proportion of the β-Cu2V2O7 phase was lower, as well as the discoloration rate constant. Thus, this work has contributed to demonstrate how the choice of fuel can influence the formation of the α- and β-phases of Cu2V2O7 and, therefore, may promote the development of materials with greater stability and photoelectrocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yahya N, Aziz F, Jamaludin NA, Mutalib MA, Ismail AF, Salleh WN, Jaafar J, Yusof N, Ludin NA (2018) A review of integrated photocatalyst adsorbents for wastewater treatment. J Environ Chem Eng 6(6):7411–7425

    CAS  Google Scholar 

  2. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39(11):4206–4219

    CAS  PubMed  Google Scholar 

  3. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    CAS  Google Scholar 

  4. Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C Photochem Rev 31:1–35

    CAS  Google Scholar 

  5. Zarei E, Ojani R (2017) Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J Solid State Electrochem 21(2):305–336

    CAS  Google Scholar 

  6. Baccaro A, Gutz I (2017) Fotoeletrocatálise em semicondutores: dos princípios básicos até sua conformação à nanoescala. Quim Nova 41:326–339

    Google Scholar 

  7. Tayebi M, Lee B-K (2019) Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew Sust Energ Rev 111:332–343

    CAS  Google Scholar 

  8. Liu Z, Sun K, Wei M, Ma Z (2018) Phosphorus-doped cerium vanadate nanorods with enhanced photocatalytic activity. J Colloid Interface Sci 531:618–627

    CAS  PubMed  Google Scholar 

  9. Hassan A, Iqbal T, Tahir MB, Afsheen S (2019) A review on copper vanadate-based nanostructures for photocatalysis energy production. Int J Energy Res 43(1):9–28

    CAS  Google Scholar 

  10. Park J-S, Cho JS, Chan Kang Y (2019) Nickel vanadate microspheres with numerous nanocavities synthesized by spray drying process as an anode material for Li-ion batteries. J Alloys Compd 780:326–333

    CAS  Google Scholar 

  11. Newhouse PF, Boyd DA, Shinde A, Guevarra D, Zhou L, Soedarmadji E, Li G, Neaton JB, Gregoire JM (2016) Solar fuel photoanodes prepared by inkjet printing of copper vanadates. J Mater Chem A 4(19):7483–7494

    CAS  Google Scholar 

  12. Wang S, Li S, Wang W, Zhao M, Liu J, Feng H, Chen Y, Gu Q, Du Y, Hao W (2019) A non-enzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light. Sensors Actuators B Chem 291:34–41

    Google Scholar 

  13. Mortadi H, Sabbar E, Bettach M (2019) Electrical conductivity and dielectric behavior in copper divanadates. Phys B Condens Matter 561:159–163

    CAS  Google Scholar 

  14. Rajeshwar K, Hossain MK, Macaluso RT, Janáky C, Varga A, Kulesza PJ (2018) Review—copper oxide-based ternary and quaternary oxides: where solid-state chemistry meets photoelectrochemistry. J Electrochem Soc 165(4):H3192–H3206

    CAS  Google Scholar 

  15. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalytic activity. J Mater Sci Mater Electron 27:4871–4878

    CAS  Google Scholar 

  16. Han G, Yang S, Huang Y, Yang J (2017) Hydrothermal synthesis and electrochemical sensing properties of copper vanadate nanocrystals with controlled morphologies. Trans Nonferrous Met Soc China 27(5):1105–1116

    CAS  Google Scholar 

  17. Wang Y, Cao L, Huang J, Kou L, Li J, Wu J, Liu Y, Pan L (2019) Improved Li-storage properties of Cu2V2O7 microflower by constructing an in situ CuO coating. ACS Sustain Chem Eng 7(6):6267–6274

    CAS  Google Scholar 

  18. Zhang N, Li L, Wu M, Li Y, Feng D, Liu C, Mao Y, Guo J, Chao M, Liang E (2016) Negative thermal expansion and electrical properties of α-Cu2V2O7. J Eur Ceram Soc 36(11):2761–2766

    CAS  Google Scholar 

  19. Palacio LA, Silva ER, Catalão R, Silva JM, Hoyos DA, Ribeiro FR, Ribeiro MF (2008) Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. J Hazard Mater 153(1-2):628–634

    CAS  PubMed  Google Scholar 

  20. Kalanur SS, Seo H (2019) Facile growth of compositionally tuned copper vanadate nanostructured thin films for efficient photoelectrochemical water splitting. Appl Catal B Environ 249:235–245

    CAS  Google Scholar 

  21. Khan I, Qurashi A (2017) Shape controlled synthesis of copper vanadate platelet nanostructures, their optical band edges, and solar-driven water splitting properties. Sci Rep 7(1):14370

    PubMed  PubMed Central  Google Scholar 

  22. Denisova LT, Belousova NV, Denisov VM, Galiakhmetova NA (2017) High-temperature heat capacity of oxides of the CuO–V2O5 system. Phys Solid State 59(6):1270–1274

    CAS  Google Scholar 

  23. Bhowal S, Sannigrahi J, Majumdar S, Dasgupta I (2017) A comparative study of electronic, structural, and magnetic properties of α-, β-, and γ- Cu2V2O7. Phys Rev B 95(7):075110

    Google Scholar 

  24. Hossain MK, Sotelo P, Sarker HP, Galante MT, Kormányos A, Longo C, Macaluso RT, Huda MN, Janáky C, Rajeshwar K (2019) Rapid one-pot synthesis and photoelectrochemical properties of copper vanadates. ACS Appl Energy Mater 2(4):2837–2847

    CAS  Google Scholar 

  25. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12(3-4):44–50

    CAS  Google Scholar 

  26. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116(23):14493–14586

    CAS  PubMed  Google Scholar 

  27. Liang Y, Liu P, Li HB, Yang GW (2012) Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. Cryst Eng Comm 14(9):3291–3296

    CAS  Google Scholar 

  28. Wei Y, Nam K, Chen G, Ryu C, Kim K (2005) Synthesis and structural properties of stoichiometric and oxygen deficient CuV2O6 prepared via co-precipitation method. Solid State Ionics 176(29-30):2243–2249

    CAS  Google Scholar 

  29. Wen W, Wu J-M (2014) Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv 4(101):58090–58100

    CAS  Google Scholar 

  30. Natarajan K, Bajaj HC, Tayade RJ (2019) Synthesis route impact on BiVO4 nanoparticles and their visible light photocatalytic activity under green LED irradiation. J Nanosci Nanotechnol 19(8):5100–5115

    CAS  PubMed  Google Scholar 

  31. Zhang X, Pei Z, Wu T, Lu H, Huang H (2015) A mechanistic study of the sulfur tolerance of Cu-V mixed oxides in toluene catalytic combustion. React Kinet Mech Catal 116(2):467–478

    CAS  Google Scholar 

  32. Molefe FV, Noto LL, Dhlamini MS, Mothudi BM, Orante-Barrón VR (2019) Structural, photoluminescence and thermoluminescence study of novel Li+ co-activated lanthanum oxide activated with Dy3+ and Eu3+ obtained by microwave-assisted solution combustion synthesis. Opt Mater (Amst) 88:540–550

    CAS  Google Scholar 

  33. Khodadadi MR, Olya ME, Naeimi A (2016) Highly efficient Al-doped ZnO : Ag catalyst for RB19 photocatalytic degradation: microwave-assisted synthesis and characterization. Korean J Chem Eng 33(7):2018–2026

    CAS  Google Scholar 

  34. Afonso R, Serafim JA, Lucilha AC, Silva MR, Lepre LF, Ando RA, Dall’Antonia LH (2014) Photoelectroactivity of bismuth vanadate prepared by combustion synthesis: effect of different fuels and surfactants. J Braz Chem Soc 25:726–733

    CAS  Google Scholar 

  35. Afonso R, Eisele APP, Serafim JA, Lucilha AC, Duarte EH, Tarley CRT, Sartori ER, Dall’Antonia LH (2016) BiVO4-Bi2O3/ITO electrodes prepared by layer-by-layer: application in the determination of atenolol in pharmaceutical formulations and urine. J Electroanal Chem 765:30–36

    CAS  Google Scholar 

  36. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    CAS  Google Scholar 

  37. Atkins P, de Paula J, Keeler J (2017) Atkins’ physical chemistry. OUP Oxford, England

    Google Scholar 

  38. Hillel T, Ein-Eli Y (2013) Copper vanadate as promising high voltage cathodes for Li thermal batteries. J Power Sources 229:112–116

    CAS  Google Scholar 

  39. Palacio LA, Silva JM, Ribeiro FR, Ribeiro MF (2008) Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate. Catal Today 133–135:502–508

    Google Scholar 

  40. Andrukaitis E, Cooper JP, Smit JH (1995) Lithium intercalation in the divalent metal vanadates MeV2O6 (Me = Cu, Co, Ni, Mn or Zn). J Power Sources 54(2):465–469

    CAS  Google Scholar 

  41. Radosavljevic I, Evans JSO, Sleight AW (1998) Synthesis and structure of bismuth copper vanadate, BiCu2VO6. J Solid State Chem 141(1):149–154

    CAS  Google Scholar 

  42. Rao NS, Palanna OG (1993) Phase transition in copper(II) pyrovanadate. Bull Mater Sci 16(1):37–43

    CAS  Google Scholar 

  43. Krasnenko TI, Rotermel’ MV, Petrova SA, Zakharov RG, Sivtsova OV, Chvanova AN (2008) Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting. Russ J Inorg Chem 53(10):1641–1647

    Google Scholar 

  44. Erri P, Pranda P, Varma A (2004) Oxidizer−fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate−model fuels. Ind Eng Chem Res 43(12):3092–3096

    CAS  Google Scholar 

  45. Lenka RK, Mahata T, Sinha PK, Tyagi AK (2008) Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels. J Alloys Compd 466(1-2):326–329

    CAS  Google Scholar 

  46. Sivakumar V, Suresh R, Giribabu K, Manigandan R, Munusamy S, Praveen Kumar S, Muthamizh S, Narayanan V (2014) Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property. J Mater Sci Mater Electron 25:1485–1491

    CAS  Google Scholar 

  47. Kim M, Joshi B, Yoon H, Ohm TY, Kim K, Al-Deyab SS, Yoon SS (2017) Electrosprayed copper hexaoxodivanadate (CuV2O6) and pyrovanadate (Cu2V2O7) photoanodes for efficient solar water splitting. J Alloys Compd 708:444–450

    CAS  Google Scholar 

  48. Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W, Miao B, Xu S (2015) Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceram Int 41(10):12626–12632

    CAS  Google Scholar 

  49. Raja S, Subramani G, Bheeman D, Rajamani R, Bellan CS (2016) Structural and optical properties of vacuum evaporated V2O5 thin films. Optik 127(1):461–464

    CAS  Google Scholar 

  50. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54(11):2201–2218

    Google Scholar 

  51. Eda S, Fujishima M, Tada H (2012) Low temperature-synthesis of BiVO4 nanorods using polyethylene glycol as a soft template and the visible-light-activity for copper acetylacetonate decomposition. Appl Catal B Environ 125:288–293

    CAS  Google Scholar 

  52. Sugiyama S, Hashimoto T, Tanabe Y, Shigemoto N, Hayashi H (2005) Effects of the enhancement of the abstraction of lattice oxygen from magnesium vanadates incorporated with copper(II) cations on the oxidative dehydrogenation of propane. J Mol Catal A Chem 227(1-2):255–261

    CAS  Google Scholar 

  53. Bian Z-Y, Zhu Y-Q, Zhang J-X, Ding A-Z, Wang H (2014) Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts. Chemosphere 117:527–531

    CAS  PubMed  Google Scholar 

  54. Fotiev AA, Slobodin BV, Khodos MY, Pletnev RN (1988) Vanadates: composition, synthesis, structure, properties. Nauka, Moscow (USSR)

    Google Scholar 

  55. Petrova SA, Zakharov RG, Rotermel’ MV, Krasnenko TI, Vatolin NA (2005) A new high-temperature modification of copper pyrovanadate. Dokl Chem 400(4-6):30–33

    CAS  Google Scholar 

  56. Pommer J, Kataev V, Choi K-Y, Lemmens P, Ionescu A, Pashkevich Y, Freimuth A, Güntherodt G (2003) Interplay between structure and magnetism in the spin-chain compound (Cu,Zn)2V2O7. Phys Rev B 67(21):214410

    Google Scholar 

  57. Ameri V, Eghbali-Arani M, Pourmasoud S (2017) New route for preparation of cerium vanadate nanoparticles with different morphology and investigation of optical and photocatalytic properties. J Mater Sci Mater Electron 28:18835–18841

    CAS  Google Scholar 

  58. Mosleh M, Mahinpour A (2016) Sonochemical synthesis and characterization of cerium vanadate nanoparticles and investigation of its photocatalyst application. J Mater Sci Mater Electron 27:8930–8934

    CAS  Google Scholar 

  59. Guo W, Chemelewski WD, Mabayoje O, Xiao P, Zhang Y, Mullins CB (2015) Synthesis and characterization of CuV2O6 and Cu2V2O7: two photoanode candidates for photoelectrochemical water oxidation. J Phys Chem C 119(49):27220–27227

    CAS  Google Scholar 

  60. Karimi A, Kazeminezhad I, Azizi S (2019) Ag/αFe2O3-rGO novel ternary nanocomposites: synthesis, characterization, and photocatalytic activity. Ceram Int 45(3):3441–3448

    CAS  Google Scholar 

Download references

Acknowledgments

L.P.C. thanks to CAPES for the Master scholarship. The authors would like also to thank LMEM-UEL, LARX-UEL, and LABSPEC-UEL. The two anonymous reviewers are also thanked for constructive criticism of an earlier manuscript version.

Funding

This work is funded by the Fundação Araucária (PROT. 38.647 SIT.22391), CNPq, and INCT in Bioanalytics (FAPESP grant no. 2014/50867-3 and CNPq grant no. 465389/2014-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Dall’Antonia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, L.P., Lucilha, A.C., Gomes, G.A.B. et al. Copper pyrovanadate electrodes prepared by combustion synthesis: evaluation of photoelectroactivity. J Solid State Electrochem 24, 1935–1950 (2020). https://doi.org/10.1007/s10008-020-04721-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04721-z

Keywords

Navigation