Skip to main content
Log in

Comparison of PGAA and wet chemical analysis for determining major element contents in eucritic meteorites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Prompt gamma-ray activation analysis (PGAA) was applied to well homogenized meteorite samples initially prepared for the wet chemical analysis. By comparing the PGAA data with wet chemical analysis data in literatures, it was confirmed that PGAA can be alternative or even advantageous to wet chemical analysis in terms of the data reliability. Because the same sample can be analyzed by INAA followed by PGAA, data obtained by a combination of PGAA and INAA were proved to enable us to discuss the detailed chemical characteristics of meteorite samples represented by eucritic meteorites (eucrites).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haramura H, Kushiro I, Yanai K (1983) Chemical compositions of Antarctic meteorites I. Mem Natl Inst Polar Res Spec Issue 30:109–121

    CAS  Google Scholar 

  2. Jarosewich E (1990) Chemical analyses of meteorites: a compilation of study and iron meteorite analyses. Meteoritics 25:323–337

    Article  CAS  Google Scholar 

  3. Latif S, Oura Y, Ebihara M, Nakahara H (2013) Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method. Anal Bioanal Chem 405:8749–8759

    Article  CAS  Google Scholar 

  4. Ebihara M, Oura Y (2004) Chemical characterization of the extraterrestrial material returned by future space mission: an application of nuclear activation methods. Adv Space Res 34:2305–2310

    Article  CAS  Google Scholar 

  5. Yanai K, Kojima H (1995) Chemical compositions of the Antarctic meteorites. National Institute of Polar Research, Tokyo, pp 44–76

    Google Scholar 

  6. Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “igneous rock series”. Geostand Newsl 19(2):135–213

    Article  CAS  Google Scholar 

  7. Oura Y, Shirai N, Ebihara M (2003) Chemical composition of Yamato (Y) 000593 and Y000749: neutron-induced prompt gamma-ray analysis study. Antarct Meteor Res 17:55–67

    Google Scholar 

  8. Kong P, Ebihara M (1997) Reproducibility of elemental concentrations for JB-1, a GSJ rock reference sample, with special reference to Mo, W and Ta. Geochem J 31:339–344

    Article  CAS  Google Scholar 

  9. Shirai N, Ebihara M (2004) Chemical characteristics of a Martian meteorite, Yamato 980459. Antarct Meteor Res 17:55–67

    CAS  Google Scholar 

  10. Failey MP, Anderson DL, Zoller WH, Gordon GE, Lindstrom RM (1979) Neutron-capture prompt gamma-ray activation analysis for multielement determination in complex samples. Anal Chem 51:2209–2221

    Article  CAS  Google Scholar 

  11. Karouji Y, Ebihara M (2008) Reliability of prompt gamma-ray analysis for the determination of Na and Mg in rock samples. Anal Sci 24:659–663

    Article  CAS  Google Scholar 

  12. Thompson M, Ellison SLR, Wood R (2006) The international harmonized protocol for the proficiency testing of analytical chemistry laboratories. Pure Appl Chem 78:145–196

    Article  CAS  Google Scholar 

  13. Thompson M (2000) Recent trends in inter-laboratory precision of ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Analyst 125:385–386

    Article  CAS  Google Scholar 

  14. Hall GE, Vaive JA (1989) Determination of sulphur at low levels in standard reference materials by pyrohydrolysis/ion chromatography. Geostand Newsl 13:1–4

    Article  CAS  Google Scholar 

  15. Kelly WR, Murphy KE (1992) Determination of sulfur in SRM bauxite and sediment samples by isotope dilution thermal ionization mass spectrometry. Geostand Newsl 16:3–8

    Article  CAS  Google Scholar 

  16. Makishima A, Nakamura E (2001) Determination of total sulfur at microgram per gram levels in geological materials by oxidation of sulfur into sulfate with in situ generation of bromine using isotope dilution high-resolution ICPMS. Anal Chem 73:2547–2553

    Article  CAS  Google Scholar 

  17. Laul JC, Wakita H, Showalter DL, Boynton WV, Schimtt RA (1972) Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples. In: Proceedings of the 3rd Lunar science conference, Geochimica et Cosmochimica Acta, vol 2. The MIT Press, Cambridge, pp 1181–1200

  18. Wänke H, Dreibus G (1988) Chemical composition and accretion history of terrestrial planets. Philos Trans R Soc Lond Ser A 325:547–558

    Google Scholar 

  19. Nakamoto T, Oura Y, Ebihara M (2003) Comparative study of activation analyses for the determination of trace halogens in geological and cosmochemical samples. Anal Sci 23:1113–1119

    Article  Google Scholar 

  20. Mori L, Gómez-Tuena A, Cai Y, Goldstein SL (2007) Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chem Geol 244:452–473

    Article  CAS  Google Scholar 

  21. Yonezawa C (1993) Prompt gamma-ray analysis of elements using cold and thermal reactor guided neutron beams. Anal Sci 9:185–193

    Article  CAS  Google Scholar 

  22. Curtis D, Gladney E, Jurney E (1980) A revision of the meteorite based cosmic abundance of boron. Geochim Cosmochim Acta 44:1945–1953

    Article  CAS  Google Scholar 

  23. Kitts K, Lodders K (1998) Survey and evaluateon of eucrite bulk compositeons. Meteorit Planet Sci 33:A197–A213

    Article  Google Scholar 

  24. Oura Y, Takahashi C, Ebihara M (2004) Boron and chlorine abundances in Antarctic chondrites: a PGA study. Antarct Meteor Res 17:172–184

    CAS  Google Scholar 

  25. Islam MA, Ebihara M, Toh Y, Harada H (2011) Comparison of multiple prompt g-ray analysis for the elemental analysis of geological and cosmochemical samples. Anal Chem 83:7486–7491

    Article  CAS  Google Scholar 

  26. Dreibus G, Spettel B, Wanke H (1979) Halogens in meteorites and their primordial abundances. Phys Chem Earth 11:3–38

    Article  Google Scholar 

  27. Langenauer M, Lrahenbuhl U, Furrer V, Wyttenbach A (1992) Determination of fluorine, chlorine bromin and iodine in seven geochemical reference samples. Geostand Newsl 16:41–44

    Article  CAS  Google Scholar 

  28. Shinonaga T, Ebihara M, Nakahara H, Tomura K, Heumann KG (1994) Cl, Br and I in igneous standard rocks. Chem Geol 115:213–225

    Article  CAS  Google Scholar 

  29. Ozaki H, Ebihara M (2007) Determination of trace halogens in rock samples by radiochemical neutron activation analysis coupled with k0-standardization method. Anal Chim Acta 583:384–391

    Article  CAS  Google Scholar 

  30. Ebihara M, Shinonaga T, Nakahara H, Kondoh A, Honda M, Miyamoto M, Kojima H (1990) Depth-profiles of halogen abundance and integrated intensity of hydration band 3 μm in ALH 77231, Antarctic L6 chondrite. In: Koeberl C, Cassidy WA (eds) Workshop on differences between Antarctic and Non-Antarctic Meteorites. Lunar Planet Inst, Houston, pp 32–37

  31. Ebihara M, Hayano K, Shirai N (2020) Determination of trace rare earth elements in rock samples including meteorites by ICP-MS coupled with isotope dilution and comparison methods. Anal Chim Acta 1101:81–89

    Article  CAS  Google Scholar 

  32. Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    Article  CAS  Google Scholar 

  33. Hsu W, Crozaz G (1996) Mineral chemistry and petrogenesis of eucrites: I. Noncumulate eucrites. Geochim Cosmochi Acta 60:4571–4591

    Article  CAS  Google Scholar 

  34. Mittlefehldt DW, Lindstrom MM (1991) Generation of abnormal trace element abundances in Antarctic eucrites by weathering processes. Geochim Cosmochim Acta 55:77–87

    Article  CAS  Google Scholar 

  35. Burnett DS, Woolum DS, Benjamin TM, Rogers PSZ, Duffy CJ, Maggiore C (1988) High precision thick target PIXE analyses of carbonaceous meteorites. Nucl Instrum Methods Phys Res Sect B 35:67–74

    Article  Google Scholar 

  36. Wolf D, Palme H (2001) The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus. Meteorit Planet Sci 36:559–571

    Article  CAS  Google Scholar 

  37. Ebihara M, Shirai N, Bennett JW, Stopic AJ (2018) A comparison of INAA and ICP-MS/ICP-AES methods for the analysis of meteorite samples. J Radioanal Nucl Chem 318:1681–1687

    Article  CAS  Google Scholar 

  38. Makishima A, Nakamura E (2006) Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope diluteion-internal standardisation (ID-IS) and multi-stage internal standardisation. Geostand Geoanal Res 30:245–271

    Article  CAS  Google Scholar 

  39. Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V (2010) Calibration-free laser-induced breakdown spectroscopy: state of the art. Spectrochim Acta Part B 65:1–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Institute of Polar Research for providing the three eucrites. PGAA and INAA analyses were made possibly by an interuniversity cooperative program for the use of JAEA facilities, supported by the University of Tokyo. This study was partly supported by JSPS KAKENHI Grants JP15340193 and 19340169 (ME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shirai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirai, N., Hozumi, T., Toh, Y. et al. Comparison of PGAA and wet chemical analysis for determining major element contents in eucritic meteorites. J Radioanal Nucl Chem 325, 949–957 (2020). https://doi.org/10.1007/s10967-020-07273-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07273-8

Keywords

Navigation