Skip to main content
Log in

Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, by means of linear and nonlinear (regular) weak separation functions, we obtain some characterizations of robust optimality conditions for uncertain optimization problems, especially saddle point sufficient optimality conditions. Additionally, the relationships between three approaches used for robustness analysis: image space analysis, vector optimization and set-valued optimization, are discussed. Finally, an application for finding a shortest path is given to verify the validity of the results derived in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)

    Article  MathSciNet  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  3. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer, Amsterdam (1997)

    Book  Google Scholar 

  4. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    Article  MathSciNet  Google Scholar 

  5. Goerigk, M., Schöbel, A.: Algorithm engineering in robust optimization. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering: Selected Results and Surveys. LNCS State of the Art: vol. 9220. Springer arXiv:1505.04901. Final volume for DFG Priority Program 1307 (2016)

  6. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Progr. Ser. A 88(3), 411–424 (2000)

    Article  MathSciNet  Google Scholar 

  7. Gorissen, B.L., Blanc, H., den Hertog, D., Ben-Tal, A.: Technical note-deriving robust and globalized robust solutions of uncertain linear programs with general convex uncertainty sets. Oper. Res. 62, 672–679 (2014)

    Article  MathSciNet  Google Scholar 

  8. Jeyakumar, V., Lee, G.M., Li, G.Y.: Characterizing robust solution sets of convex programs under data uncertainty. J. Optim. Theory Appl. 164, 407–435 (2015)

    Article  MathSciNet  Google Scholar 

  9. Sun, X.K., Peng, Z.Y., Guo, X.L.: Some characterizations of robust optimal solutions for uncertain convex optimization problems. Optim. Lett. 10, 1463–1478 (2016)

    Article  MathSciNet  Google Scholar 

  10. Sun, X.K., Teo, K.L., Tang, L.P.: Dual approaches to characterize robust optimal solution sets for a class of uncertain optimization problems. J. Optim. Theory Appl. 182, 984–1000 (2019)

    Article  MathSciNet  Google Scholar 

  11. Lee, G.M., Son, P.T.: On nonsmooth optimality theorems for robust optimization problems. Bull. Korean Math. Soc. 51, 287–301 (2014)

    Article  MathSciNet  Google Scholar 

  12. Klamroth, K., Köbis, E., Schöbel, A., Tammer, C.: A unified approach for different kinds of robustness and stochastic programming via nonlinear scalarizing functionals. Optimization 62(5), 649–671 (2013)

    Article  MathSciNet  Google Scholar 

  13. Klamroth, K., Köbis, E., Schöbel, A., Tammer, C.: A unified approach to uncertain optimization. Eur. J. Oper. Res. 260, 403–420 (2017)

    Article  MathSciNet  Google Scholar 

  14. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the Ninth International Mathematical Programming Symposium, Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, pp. 423–439 (1979)

  15. Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case. Wiley, New York (1975)

    MATH  Google Scholar 

  16. Giannessi, F.: Constrained Optimization and Image Space Analysis: Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Li, S.J., Xu, Y.D., You, M.X., Zhu, S.K.: Constrained extremum problems and image space analysis-part I: optimality conditions. J. Optim. Theory Appl. 177, 609–636 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, S.J., Xu, Y.D., You, M.X., Zhu, S.K.: Constrained extremum problems and image space analysis-part II: duality and penalization. J. Optim. Theory Appl. 177, 637–659 (2018)

    Article  MathSciNet  Google Scholar 

  19. Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Glob. Optim. 42, 401–412 (2008)

    Article  MathSciNet  Google Scholar 

  20. Zhu, S.K.: Image space analysis to Lagrange-type duality for constrained vector optimization problems with applications. J. Optim. Theory Appl. 177, 743–769 (2018)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Huang, N.J.: Image space analysis for variational inequalities with cone constraints applications to traffic equilibria. Sci. China Math. 55, 851–868 (2012)

    Article  MathSciNet  Google Scholar 

  22. Chen, J.W., Köbis, E., Köbis, M., Yao, J.C.: Image space analysis for constrained inverse vector variational inequalities via multiobjective optimization. J. Optim. Theory Appl. 177, 816–834 (2018)

    Article  MathSciNet  Google Scholar 

  23. Mastroeni, G.: Nonlinear separation in the image space with applications to penalty methods. Appl. Anal. 91, 1901–1914 (2012)

    Article  MathSciNet  Google Scholar 

  24. Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013)

    Article  MathSciNet  Google Scholar 

  25. Xu, Y.D.: Nonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalities. Optim. Lett. 10, 527–542 (2016)

    Article  MathSciNet  Google Scholar 

  26. Xu, Y.D.: Nonlinear separation approach to inverse variational inequalities. Optimization 65(7), 1315–1335 (2016)

    Article  MathSciNet  Google Scholar 

  27. Wei, H.Z., Chen, C.R., Li, S.J.: Characterizations for optimality conditions of general robust optimization problems. J. Optim. Theory Appl. 177, 835–856 (2018)

    Article  MathSciNet  Google Scholar 

  28. Khan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Berlin (2015)

    Book  Google Scholar 

  29. Wei, H.Z., Chen, C.R., Li, S.J.: A unified characterization of multiobjective robustness via separation. J. Optim. Theory Appl. 179, 86–102 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ansari, Q.H., Köbis, E., Sharma, P.K.: Characterizations of multiobjective robustness via oriented distance function and image space analysis. J. Optim. Theory Appl. 181, 817–839 (2019)

    Article  MathSciNet  Google Scholar 

  31. Wei, H.Z., Chen, C.R., Li, S.J.: Characterizations of multiobjective robustness on vectorization counterparts. Optimization 69(3), 493–518 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wei, H.Z., Chen, C.R., Li, S.J.: A unified approach through image space analysis to robustness in uncertain optimization problems. J. Optim. Theory Appl. 184, 466–493 (2020)

    Article  MathSciNet  Google Scholar 

  33. Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37(1), 1–6 (2009)

    Article  MathSciNet  Google Scholar 

  34. Jahn, J.: Vector Optimization-Theory, Applications, and Extensions, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  35. Gerth(Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67(2), 297–320 (1990)

    Article  MathSciNet  Google Scholar 

  36. Hiriart-Urruty, J.B.: Tangent cone, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Article  MathSciNet  Google Scholar 

  37. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)

    Article  MathSciNet  Google Scholar 

  38. Ehrgott, M.: Multicriteria Optimization. Springer, New York (2005)

    MATH  Google Scholar 

  39. Giannessi, F.: Some perspectives on vector optimization via image space analysis. J. Optim. Theory Appl. 177, 906–912 (2018)

    Article  MathSciNet  Google Scholar 

  40. Pellegrini, L.: Some perspectives on set-valued optimization via image space analysis. J. Optim. Theory Appl. 177, 811–815 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Editor-in-Chief and two anonymous referees for their constructive suggestions and detailed comments, which helped to improve the paper. Particularly, they thank one referee for pointing out that the relations between the ISA approach and tools from vector optimization and set-valued optimization could be explored (see Sects. 4.1 and 4.2, where Theorem 4.1 has been presented by one referee). Also they thank to Manxue You (Chongqing University) for helpful discussions on the image space analysis. This research was supported by the Project funded by China Postdoctoral Science Foundation (Grant No. 2019M660247), the Fundamental Research Funds for the Central Universities (Grant Nos. GK202003010, 106112017CDJZRPY0020) and the National Natural Science Foundation of China (Grant No. 11971078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Zhi Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, HZ., Chen, CR. & Li, SJ. Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis. J Optim Theory Appl 186, 459–479 (2020). https://doi.org/10.1007/s10957-020-01709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01709-7

Keywords

Mathematics Subject Classification

Navigation