Skip to main content
Log in

Mn3O4/p(DCPD)HIPE nanocomposites as an efficient catalyst for oxidative degradation of phenol

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The increase in the amount of wastewater containing organic pollutants in various industrial processes creates serious problems for the environment. Sulfate radical-based advanced oxidation process (AOP) is an effective route to remove pollutants from wastewater. However, designing a new nano-based catalyst to generate sulfate radicals is an important factor for the AOP. For this vision, porous trimanganese tetraoxide-polydicyclopentadiene (Mn3O4/pDCPD) nanocomposite, having an open-cell structure, was successfully designed via high internal phase emulsion (HIPE) and ring-opening metathesis polymerization (ROMP) approaches. The effect of Mn3O4 nanoparticle concentration on the structure was investigated, and the resulting Mn3O4/p(DCPD)HIPE nanocomposites were fully characterized by FT-IR, XRD, FE-SEM, TEM, solid-state 13C CPMAS NMR, DSC, and TGA analysis. The selected nanocomposite containing 5 wt% of Mn3O4 was used as a model catalyst to mediate the heterogeneous oxidation of phenol in the presence of oxone. It is concluded that Mn3O4/p(DCPD)HIPE nanocomposite is a highly active catalyst to generate sulfate radicals for phenol degradation. Complete removal of 25 mg/L phenol was achieved in 30 min under the conditions of [catalyst] = 0.8 g/L, [oxone] = 2 g/L, and T = 25 °C. The phenol degradation followed the pseudo-first-order kinetic model, and the highest kinetic constant of 0.0611 min−1 was achieved. No significant loss in the activity of the catalyst was determined after four consecutive cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander L, Klug HP (1950) Determination of crystallite size with the x-ray spectrometer. J Appl Phys 2:137–142

    Article  Google Scholar 

  • Anipsitakis GP, Dionysiou DD, Gonzalez MA (2006) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol 40:1000–1007

    Article  CAS  Google Scholar 

  • Binks BP, Lumsdon SO (2001) Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17:4540–4547

    Article  CAS  Google Scholar 

  • Chen C, Xie M, Kong L, Lu W, Feng Z, Zhan J (2020) Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. J Hazard Mater 390:122146

    Article  CAS  Google Scholar 

  • Guerra-Rodríguez S, Rodríguez E, Singh D, Rodríguez-Chueca J (2018) Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water 10:1828. https://doi.org/10.3390/w10121828

    Article  CAS  Google Scholar 

  • Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments 49:117–125

    Article  CAS  Google Scholar 

  • Han YF, Chen FX, Ramesh K, Zhong ZY, Widjaja E, Chen LW (2007) Preparation of nanosized Mn3O4/SBA-15 catalyst for complete oxidation of low concentration EtOH in aqueous solution with H2O2. Appl Catal B 76:227–234

    Article  CAS  Google Scholar 

  • Hu L, Deng G, Lu W, Lu Y, Zhang Y (2017) Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B. Chin J Catal 38:1360–1372

    Article  CAS  Google Scholar 

  • Ishii M, Nakahira M, Yamanaka T (1972) Infrared absorption spectra and cation distributions in (Mn,Fe)3O4. Solid State Commun 11:209–212

    Article  CAS  Google Scholar 

  • Jain R, Sikarwar S (2006) Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater. Int J Environ Pollut 27:158–178

    Article  CAS  Google Scholar 

  • Jansi Rani B, Ravina M, Ravi G, Ravichandran S, Ganesh V, Yuvakkumar R (2018) Synthesis and characterization of hausmannite (Mn3O4) nanostructures. Surfac Interfac 11:28–36

    Article  Google Scholar 

  • Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health. Springer, Dordrecht, pp 55–71

    Chapter  Google Scholar 

  • Kovacic S, Krajnc P, Slugovc C (2010) Inherently reactive polyHIPE material from dicyclopentadiene. Chem Commun 46:7504–7506

    Article  CAS  Google Scholar 

  • Kovacic S, Kren H, Krajnc P, Koller S, Slugovc C (2013a) The use of an emulsion templated microcellular poly(dicyclopentadiene-co-norbornene) membrane as a separator in lithium-ion batteries. Macromol Rapid Commun 34:581–587

    Article  CAS  Google Scholar 

  • Kovacic S, Matsko N, Ferk G, Slugovc C (2013b) Macroporous poly(dicyclopentadiene) Fe2O3/Fe3O4 nanocomposite foams by high internal phase emulsion templating. J Mater Chem A 1:7971–7978

    Article  CAS  Google Scholar 

  • Krishnan S, Rawindran H, Sinnathambi CM, Lim JW (2017) Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conf Ser Mater Sci Eng 206:012089

    Article  Google Scholar 

  • Li B, Zhang X, Dou J, Hu C (2019) Facile synthesis of pseudocapacitive Mn3O4 nanoparticles for highperformance supercapacitor. Ceram Int 45:16297–16304

    Article  CAS  Google Scholar 

  • Mert EH, Slugovc C, Krajnc P (2015) Tailoring the mechanical and thermal properties of dicyclopentadiene polyHIPEs with the use of a comonomer. Express Polym Lett 9:344–353

    Article  CAS  Google Scholar 

  • Metcalf, Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill Companies, New York

    Google Scholar 

  • Mohandes F, Davar F, Salavati-Niasari M (2010) Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J Phys Chem Solids 71:1623–1628

    Article  CAS  Google Scholar 

  • Movahedi M, Mahjoub AR, Janitabar-Darzi S (2009) Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO2. J Iran Chem Soc 6:570–577

    Article  CAS  Google Scholar 

  • Pulko I, Krajnc P (2012) High internal phase emulsion templating-a path to hierarchically porous functional polymers. Macromol Rapid Commun 33:1731–1746

    Article  CAS  Google Scholar 

  • Ramsden W (1904) Separation of solids in the surface-layers of solutions and suspensions (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)- preliminary account. Proc R Soc Lond 72:156–164

    Article  Google Scholar 

  • Raptopoulos G, Anyfantis GC, Chriti D, Paraskevopoulou P (2017) Synthesis and structural characterization of poly(dicyclopentadiene) gels obtained with a novel ditungsten versus conventional W and Ru mononuclear catalysts. Inorg Chim Acta 460:69–76

    Article  CAS  Google Scholar 

  • Salavati-Niasari M, Davar F, Mazaheri M (2008) Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex. Polyhedron 27:3467–3471

    Article  CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Ang HM, Tadé MO, Wang S (2012) α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catal Commun 26:144–148

    Article  CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Ang HM, Tade MO, Wang S (2013a) A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. J Colloid Interface Sci 407:467–473

    Article  CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Ang HM, Tadé MO, Wang S (2013b) Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl Catal B Environ 142-143:729–735

    Article  CAS  Google Scholar 

  • Saroyan H, Ntagiou D, Rekos K, Deliyanni E (2019) Reactive black 5 degradation on manganese oxides supported on sodium hydroxide modified graphene oxide. Appl Sci 9:2167

    Article  CAS  Google Scholar 

  • Shaik DPMD, Pitcheri R, Qiu Y, Hussain OM (2019) Hydrothermally synthesized porous Mn3O4 nanoparticles with enhanced electrochemical performance for supercapacitors. Ceram Int 45:2226–2233

    Article  CAS  Google Scholar 

  • Siddique K, Rizwan M, Shahid MJ, Ali S, Ahmad R, Rizvi H (2017) Textile wastewater treatment options. A critical review. In: Anjum NA, Gill SS, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Cham, pp 183–207

    Chapter  Google Scholar 

  • Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39:199–234

    Article  CAS  Google Scholar 

  • Vidavsky Y, Navon Y, Ginzburg Y, Gottlieb M, Lemcoff NG (2015) Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene. Beilstein J Org Chem 11:1469–1474

    Article  CAS  Google Scholar 

  • Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42:251–325

    Article  Google Scholar 

  • Wang Q, Li Y, Shen Z, Liu X, Jiang C (2019a) Facile synthesis of three-dimensional Mn3O4 hierarchical microstructures for efficient catalytic phenol oxidation with peroxymonosulfate. Appl Surf Sci 495:143568

    Article  CAS  Google Scholar 

  • Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Peijnenburg WJGM, Zhang W, Jin Y, Su C (2019b) Next-generation multifunctional carbon–metal nanohybrids for energy and environmental applications. Environ Sci Technol 53:7265–7287

    Article  CAS  Google Scholar 

  • Wang S, Gao S, Tian J, Wang Q, Wang T, Hao X, Cui F (2020) A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation. J Hazard Mater 387:121995

    Article  CAS  Google Scholar 

  • Yang YS, Lafontaine E, Mortaigne B (1996) NMR characterisation of dicyclopentadiene resins and polydicyclopentadienes. J Appl Polym Sci 60:2419–2435

    Article  CAS  Google Scholar 

  • Yao Y, Xu C, Yu S, Zhang D, Wang S (2013) Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Ind Eng Chem Res 52:3637–3645

    Article  CAS  Google Scholar 

  • Zhang L, Zhao L, Lian J (2014) Nanostructured Mn3O4-reduced graphene oxide hybrid and its applications as efficient catalytic decomposition of orange II and high lithium storage capacity. RSC Adv 4:41838–41847

    Article  CAS  Google Scholar 

  • Zhang T, Sanguramath RA, Israel S, Silverstein MS (2019) Emulsion templating: porous polymers and beyond. Macromolecules 52:5445–5479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Kirikkale University Scientific Research Projects Coordination Unit (Turkey) (Project No. 2017/073) for financial support of this work.

Funding

Kirikkale University Scientific Research Projects Coordination Unit (Turkey) (Project No. 2017/073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Çetinkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeşil, R., Çetinkaya, S. Mn3O4/p(DCPD)HIPE nanocomposites as an efficient catalyst for oxidative degradation of phenol. J Nanopart Res 22, 198 (2020). https://doi.org/10.1007/s11051-020-04931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04931-6

Keywords

Navigation