Skip to main content
Log in

Computer simulation aided preparation of molecularly imprinted polymers for separation of bilobalide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the preparation of molecularly imprinted polymers for bilobalide (BBMIPs) was successfully achieved by bulk polymerization with methacrylamide (MAM), trimethylolpropane triacrylate (TMPTA), and acetonitrile (ACN) as functional monomer, cross-linker, and solvent, respectively. After Gaussian software simulation and single factor experiments, the prepared MIPs with a molar ratio of 1:4:15 for BB-MAM-TMPTA were systematically characterized. The hydrogen bonding interaction between BB and MAM was confirmed by a combination of FTIR and NMR analysis. Thermal gravimetric analysis results displayed that MIPs have excellent thermal stability under high temperature. Additionally, the average pore size and surface area of MIPs were found to be higher than those of NIPs through nitrogen adsorption results. The results of static adsorption and kinetic adsorption suggested that the adsorption equilibrium concentration was 0.6 mg/mL and the equilibrium time was 5 h, and the Langmuir and pseudo-second-order kinetic models were proven to fit with static and kinetic adsorption behaviors, respectively. Meanwhile, the selective adsorption study revealed that MIPs show high adsorption and great selectivity towards BB in comparison with other substances having similarly structure. MIPs also possessed a good performance on reusability, maintaining a high recovery rate after being reused 5 times. The application experiment further indicated that MIPs can effectively separate BB from low purity samples. Therefore, the prepared MIPs had a great potential for BB separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Atzori C, Bruno A, Chichino G, Bombardelli E, Scaglia M, Ghione M (1993) Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob Agents Chemother 37(7):1492–1496. https://doi.org/10.1128/aac.37.7.1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR (2003) Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant alpha(1) beta(2)gamma(2L) GABA(A) receptors. Eur J Pharmacol 464(1):1–8. https://doi.org/10.1016/s0014-2999(03)01344-x

    Article  CAS  PubMed  Google Scholar 

  3. Zhou W, Chai H, Lin PH, Lumsden AB, Yao QZ, Chen CY (2004) Clinical use and molecular mechanisms of action of extract of Ginkgo biloba leaves in cardiovascular diseases. Cardiovasc Drug Rev 22(4):309–319

    Article  CAS  Google Scholar 

  4. Ahlemeyer B, Krieglstein J (2003) Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry 36:S8–S14

    Article  CAS  Google Scholar 

  5. Loew D (2002) Value of Ginkgo biloba in treatment of Alzheimer dementia (Stellenwert von Ginkgo biloba in der Behandlung der Alzheimer-Demenz.). Wiener medizinische Wochenschrift (1946) 152 (15–16):418–422. doi:https://doi.org/10.1046/j.1563-258X.2002.02065.x

  6. Qiu F, Friesen JB, McAlpine JB, Pauli GF (2012) Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance. J Chromatogr A 1242:26–34. https://doi.org/10.1016/j.chroma.2012.03.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao D, Fu QF, Wang LJ, Wang DD, Zhang KL, Yang FQ, Xia ZN (2017) Molecularly imprinted polymers for the selective extraction of tiliroside from the flowers of Edgeworthia gardneri (wall.) Meisn. J Sep Sci 40(12):2629–2637. https://doi.org/10.1002/jssc.201700240

    Article  CAS  PubMed  Google Scholar 

  8. Chen LX, Xu SF, Li JH (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942. https://doi.org/10.1039/c0cs00084a

    Article  CAS  PubMed  Google Scholar 

  9. Meng MJ, He MQ (2016) Highly effective surface molecularly imprinted polymer for the solid-phase extraction of dihydroquercetin from Prince’s-feather Fruit sample. Sep Sci Technol 51(6):917–928. https://doi.org/10.1080/01496395.2016.1142561

    Article  CAS  Google Scholar 

  10. Shao HK, Zhao LG, Chen J, Zhou HT, Huang ST, Li K (2015) Preparation, characterization and application of molecularly imprinted monolithic column for hesperetin. J Pharm Biomed Anal 111:241–247. https://doi.org/10.1016/j.jpba.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Yusof NA, Ab Rahman SK, Hussein MZ, Ibrahim NA (2013) Preparation and characterization of molecularly imprinted polymer as SPE sorbent for melamine isolation. Polymers 5(4):1215–1228. https://doi.org/10.3390/polym5041215

    Article  CAS  Google Scholar 

  12. Jinn WS, Shin MK, Kang B, Oh S, Moon CE, Mun B, Ji YW, Lee HK, Haam S (2019) A visually distinguishable light interfering bioresponsive silica nanoparticle hydrogel sensor fabricated through the molecular imprinting technique. J Mater Chem B 7(45):7120–7128. https://doi.org/10.1039/c9tb01579e

    Article  CAS  PubMed  Google Scholar 

  13. Asghar N, Mustafa G, Yasinzai M, Al-Soud YA, Lieberzeit PA, Latif U (2019) Real-time and online monitoring of glucose contents by using molecular imprinted polymer-based IDEs sensor. Appl Biochem Biotechnol 189(4):1156–1166. https://doi.org/10.1007/s12010-019-03049-3

    Article  CAS  PubMed  Google Scholar 

  14. Li SJ, Ge Y, Tiwari A, Wang SQ, Turner APF, Piletsky SA (2011) ‘On/off’-switchable catalysis by a smart enzyme-like imprinted polymer. J Catal 278(2):173–180. https://doi.org/10.1016/j.jcat.2010.11.011

    Article  CAS  Google Scholar 

  15. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102(1):1–27. https://doi.org/10.1021/cr980039a

    Article  CAS  Google Scholar 

  16. Chen FF, Wang R, Shi YP (2012) Molecularly imprinted polymer for the specific solid-phase extraction of kirenol from Siegesbeckia pubescens herbal extract. Talanta 89:505–512. https://doi.org/10.1016/j.talanta.2011.12.080

    Article  CAS  PubMed  Google Scholar 

  17. Wu R, Shui L, Wang S, Song Z, Tai F (2016) Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice. Behav Pharmacol 27(7):596–605. https://doi.org/10.1097/fbp.0000000000000252

    Article  CAS  PubMed  Google Scholar 

  18. Chen LZ, Wang RY, Cui L, Wang X, Wang LL, Song FY, Ji WH (2018) Preparation of five high-purity iridoid glycosides from Gardenia jasminoides Eills by molecularly imprinted solid-phase extraction integrated with preparative liquid chromatography. J Sep Sci 41(13):2759–2766. https://doi.org/10.1002/jssc.201800086

    Article  CAS  PubMed  Google Scholar 

  19. Feng YG, Liu Q, Ye LF, Wu QZ, He JF (2017) Ordered macroporous quercetin molecularly imprinted polymers: preparation, characterization, and separation performance. J Sep Sci 40(4):971–978. https://doi.org/10.1002/jssc.201601011

    Article  CAS  PubMed  Google Scholar 

  20. Zhu HB, Wang YZ, Yuan Y, Zeng HA (2011) Development and characterization of molecularly imprinted polymer microspheres for the selective detection of kaempferol in traditional Chinese medicines. Anal Methods 3(2):348–355. https://doi.org/10.1039/c0ay00578a

    Article  CAS  Google Scholar 

  21. Khan S, Bhatia T, Trivedi P, Satyanarayana GNV, Mandrah K, Saxena PN, Mudiam MKR, Roy SK (2016) Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples. Food Chem 199:870–875. https://doi.org/10.1016/j.foodchem.2015.12.091

    Article  CAS  PubMed  Google Scholar 

  22. Mohajeri SA, Karimi G, Aghamohammadian J, Khansari MR (2011) Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. J Appl Polym Sci 121(6):3590–3595. https://doi.org/10.1002/app.34147

    Article  CAS  Google Scholar 

  23. Razwan SM, Jin Y, Kong GH, Li HF, Lin JM (2014) Molecularly imprinted polymer for pre-concentration of esculetin from tobacco followed by the UPLC analysis. Sci China-Chem 57(12):1751–1759. https://doi.org/10.1007/s11426-014-5180-1

    Article  CAS  Google Scholar 

  24. Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications-a review. Anal Chim Acta 717:7–20. https://doi.org/10.1016/j.aca.2011.12.026

    Article  CAS  PubMed  Google Scholar 

  25. Golsefidi MA, Es’haghi Z, Sarafraz-Yazdi A (2012) Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber-solid phase microextraction of chlorogenic acid in medicinal plants. J Chromatogr A 1229:24–29. https://doi.org/10.1016/j.chroma.2012.01.019

    Article  CAS  PubMed  Google Scholar 

  26. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) How to find effective functional monomers for effective molecularly imprinted polymers? Adv Drug Deliv Rev 57(12):1795–1808. https://doi.org/10.1016/j.addr.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  27. de Barros LA, Pereira LA, Custodio R, Rath S (2014) A novel computational approach for development of highly selective fenitrothion imprinted polymer: theoretical predictions and experimental validations. J Braz Chem Soc 25(4):619–628. https://doi.org/10.5935/0103-5053.20140009

    Article  CAS  Google Scholar 

  28. Fonseca MC, Nascimento Jr CS, Borges KB (2016) Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem Phys Lett 645:174–179. https://doi.org/10.1016/j.cplett.2015.12.061

    Article  CAS  Google Scholar 

  29. Tadi KK, Motghare RV, Ganesh V (2015) Electrochemical detection of epinephrine using a biomimic made up of hemin modified molecularly imprinted microspheres. RSC Adv 5(120):99115–99124. https://doi.org/10.1039/c5ra16636e

    Article  CAS  Google Scholar 

  30. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb(2016) Gaussian 16, Revision A.03, Gaussian, Inc.,Wallingford CT

  31. Li HH, Zhang WC, Wu ZY, Huang XS, Hui AL, He YW, Wang HY (2020) Theoretical design, preparation, and evaluation of Ginkgolide B molecularly imprinted polymers. J Sep Sci 43(2):514–523. https://doi.org/10.1002/jssc.201900675

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Gaussian 2016 software package was provided by Professor Xiaorong Wang, School of Petrochemical Engineering, Liaoning Shihua University. This study was financially supported by Anhui Provincial Natural Science Foundation (no. 1808085MC77), Key Project of Science and Technology Research and Development of Anhui Province (no. 1704a07020094), Fundamental Research Funds for the Central Universities of China (nos. JZ2019YYPY0028, PA2019GDPK0084, and PA2019GDZC0099), and Enterprise Cooperation Project (no. W2017JSKF0682).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wencheng Zhang or Zeyu Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, W., Wu, Z. et al. Computer simulation aided preparation of molecularly imprinted polymers for separation of bilobalide. J Mol Model 26, 198 (2020). https://doi.org/10.1007/s00894-020-04460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04460-y

Keywords

Navigation