Skip to main content
Log in

Photoluminescent properties of Sm3+ and Tb3+ codoped CaWO4 nanoparticles obtained by a one-step sonochemical method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Luminescent materials with LED applications can have your emission color controlled by rare earth doping. In this work, Sm3+- and Tb3+-codoped CaWO4 nanoparticles were obtained by a one-step sonochemical method. The nanoparticles were characterized by X-ray diffractogram (XRD), Raman scattering (RS) spectroscopy, The Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and visible ultraviolet spectroscopy (UV–Vis). The photoluminescent measurements were taken at room and lower temperatures for analysis of doping in emission color. The diffractograms indicate the single-phase CaWO4 with the scheelite structure and it was observed a reduction in the crystallite size as the doping. SEM and TEM images indicate the formation of nanospheres for pure and samarium-doped samples, while terbium doping results in the formation of nanorods. Room temperature photoluminescence spectra indicate a blue emission for the bare and samarium-doped CaWO4, while terbium doping emits at the green color. The codoping mixes the colors blue, green, and orange, indicating a potential material with white color emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.P. Mortensen, L.M. Johnson, K.D. Grieger, J.L. Ambroso, T.R. Fennell, Reprod. Toxicol. (2019). https://doi.org/10.1016/j.reprotox.2019.08.016

    Article  Google Scholar 

  2. N.F. Andrade Neto, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Mater. Sci. Semicond. Process. 93, 123 (2019). https://doi.org/10.1016/j.mssp.2018.12.034

    Article  CAS  Google Scholar 

  3. N.F. Andrade Neto, Y.G. Oliveira, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. 29, 19052 (2018). https://doi.org/10.1007/s10854-018-0031-z

    Article  CAS  Google Scholar 

  4. T. Debnath, A. Bandyopadhyay, T. Chakraborty, S. Das, S. Sutradhar, Mater. Res. Bull. 118, 110480 (2019). https://doi.org/10.1016/j.materresbull.2019.05.005

    Article  CAS  Google Scholar 

  5. M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, K. Saberyan, Trans. Nonferrous Met. Soc. China 25, 3967 (2015). https://doi.org/10.1016/S1003-6326(15)64045-6

    Article  CAS  Google Scholar 

  6. D. Ghanbari, M. Salavati-Niasari, M. Esmaeili-Zare, P. Jamshidi, F. Akhtarianfar, J. Ind. Eng. Chem. 20, 3709 (2014). https://doi.org/10.1016/j.jiec.2013.12.070

    Article  CAS  Google Scholar 

  7. M.S. Ardestani, A. Bitarafan-Rajabi, P. Mohammadzadeh et al., Bioorg. Chem. 96, 103572 (2020). https://doi.org/10.1016/j.bioorg.2020.103572

    Article  CAS  Google Scholar 

  8. M.A. Ebrahimzadeh, S. Mortazavi-Derazkola, M.A. Zazouli, J. Rare Earths 38, 13 (2020). https://doi.org/10.1016/j.jre.2019.07.004

    Article  CAS  Google Scholar 

  9. N.F. Andrade Neto, Y.G. Oliveira, M.R.D. Bomio, F.V. Motta, J. Electron. Mater. 48, 5900 (2019). https://doi.org/10.1007/s11664-019-07367-4

    Article  CAS  Google Scholar 

  10. B. Souri, A. Reza Rezvani, S. Abbasi, P. Hayati, R. Centore, Inorganica Chim. Acta 498, 119134 (2019). https://doi.org/10.1016/j.ica.2019.119134

    Article  CAS  Google Scholar 

  11. N.F.A. Neto, L.M.P. Garcia, E. Longo et al., J. Mater. Sci. Mater. Electron. 28, 12273 (2017). https://doi.org/10.1007/s10854-017-7044-x

    Article  CAS  Google Scholar 

  12. J. Lv, E-c Xiao, X-h Li et al., Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.10.092

    Article  Google Scholar 

  13. W. Ding, X. Wu, Q. Lu, Mater. Lett. 253, 323 (2019). https://doi.org/10.1016/j.matlet.2019.06.109

    Article  CAS  Google Scholar 

  14. N.A. Shad, M.M. Sajid, N. Amin et al., Ceram. Int. 45, 19015 (2019). https://doi.org/10.1016/j.ceramint.2019.06.142

    Article  CAS  Google Scholar 

  15. F. Lei, L. Yin, Y. Shi, J. Xie, L. Zhang, L. Fan, J. Rare Earths 34, 1179 (2016). https://doi.org/10.1016/S1002-0721(16)60151-5

    Article  CAS  Google Scholar 

  16. F.F. do Carmo, J.P.C. do Nascimento, M.X. Façanha, A.S.B. Sombra, Mater. Lett. 254, 65 (2019). https://doi.org/10.1016/j.matlet.2019.07.020

    Article  CAS  Google Scholar 

  17. R. Tomala, D. Hreniak, W. Strek, J. Rare Earths 37, 1196 (2019). https://doi.org/10.1016/j.jre.2019.03.014

    Article  CAS  Google Scholar 

  18. M. Yu, H. Xu, Y. Li, Q. Dai, G. Wang, W. Qin, J. Colloid Interface Sci. 559, 162 (2020). https://doi.org/10.1016/j.jcis.2019.10.011

    Article  CAS  Google Scholar 

  19. Y. Zhang, A. Abraha, R. Zhang et al., Opt. Mater. 84, 115 (2018). https://doi.org/10.1016/j.optmat.2018.06.062

    Article  CAS  Google Scholar 

  20. L. Li, F. Qin, L. Li, H. Gao, Z. Zhang, Opt. Commun. 452, 463 (2019). https://doi.org/10.1016/j.optcom.2019.07.077

    Article  CAS  Google Scholar 

  21. H.P. Barbosa, I.G.N. Silva, M.C.F.C. Felinto, E.E.S. Teotonio, O.L. Malta, H.F. Brito, J. Alloy. Compd. 696, 820 (2017). https://doi.org/10.1016/j.jallcom.2016.11.378

    Article  CAS  Google Scholar 

  22. H. Cho, S.M. Hwang, J.B. Lee et al., Trans. Nonferrous Met. Soc. China 24, s134 (2014). https://doi.org/10.1016/S1003-6326(14)63300-8

    Article  CAS  Google Scholar 

  23. B. Toby, J. Appl. Crystallogr. 34, 210 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  24. M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, A. Ray, Nanoscale 8, 2293 (2016). https://doi.org/10.1039/C5NR06731F

    Article  CAS  Google Scholar 

  25. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III, Phys. Status Solid. B Basic Res. 252, 1700 (2015). https://doi.org/10.1002/pssb.201552007

    Article  CAS  Google Scholar 

  26. N.F. Andrade Neto, Y.G. Oliveira, J.H.O. Nascimento, B.R. Carvalho, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. 30, 15214 (2019). https://doi.org/10.1007/s10854-019-01894-w

    Article  CAS  Google Scholar 

  27. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  28. N.F. Andrade Neto, P. Zanatta, L.E. Nascimento, R.M. Nascimento, M.R.D. Bomio, F.V. Motta, J. Electron. Mater. 48, 3145 (2019). https://doi.org/10.1007/s11664-019-07076-y

    Article  CAS  Google Scholar 

  29. A. Phuruangrat, T. Thongtem, S. Thongtem, J. Phys. Chem. Solids 70, 955 (2009). https://doi.org/10.1016/j.jpcs.2009.05.006

    Article  CAS  Google Scholar 

  30. K.G. Sharma, N.R. Singh, J. Rare Earths 30, 310 (2012). https://doi.org/10.1016/S1002-0721(12)60043-X

    Article  CAS  Google Scholar 

  31. L.S. Cavalcante, V.M. Longo, J.C. Sczancoski et al., CrystEngComm 14, 853 (2012). https://doi.org/10.1039/c1ce05977g

    Article  CAS  Google Scholar 

  32. A. Phuruangrat, T. Thongtem, S. Thongtem, J. Cryst. Growth 311, 4076 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.013

    Article  CAS  Google Scholar 

  33. M.D.P. Silva, R.F. Gonçalves, I.C. Nogueira et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 153, 428 (2016). https://doi.org/10.1016/j.saa.2015.08.047

    Article  CAS  Google Scholar 

  34. N.F.A. Neto, B.P. Dias, R.L. Tranquilin et al., J. Alloy. Compd. 823, 153617 (2020). https://doi.org/10.1016/j.jallcom.2019.153617

    Article  CAS  Google Scholar 

  35. N.F. Andrade Neto, P.M. Oliveira, R.M. Nascimento, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Ceram. Int. 45, 651 (2019). https://doi.org/10.1016/j.ceramint.2018.09.224

    Article  CAS  Google Scholar 

  36. D. Kumar, B. Singh, M. Srivastava, A. Srivastava, A. Srivastava, S. Srivastava, J. Lumin. 203, 507 (2018)

    Article  CAS  Google Scholar 

  37. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  38. G. Sanal Kumar, N. Illyaskutty, S. Suresh, R.S. Sreedharan, V.U. Nayar, V.P.M. Pillai, J. Alloy. Compd. 698, 215 (2017). https://doi.org/10.1016/j.jallcom.2016.11.082

    Article  CAS  Google Scholar 

  39. X. Zhao, W. Zhang, R. Cao, J. Energy Chem. 26, 1210 (2017). https://doi.org/10.1016/j.jechem.2017.08.014

    Article  Google Scholar 

  40. N.F.A. Neto, T.B.O. Nunes, M. Li, E. Longo, M.R.D. Bomio, F.V. Motta, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.09.151

    Article  Google Scholar 

  41. N.F. Andrade Neto, E. Longo, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Plasmonics 14, 79 (2019). https://doi.org/10.1007/s11468-018-0780-9

    Article  CAS  Google Scholar 

  42. C. Ayappan, B. Palanivel, V. Jayaraman, T. Maiyalagan, A. Mani, Mater. Sci. Semicond. Process. 104, 104693 (2019). https://doi.org/10.1016/j.mssp.2019.104693

    Article  CAS  Google Scholar 

  43. S.N. Sarangi, G.K. Pradhan, D. Samal, J. Alloy. Compd. 762, 16 (2018). https://doi.org/10.1016/j.jallcom.2018.05.143

    Article  CAS  Google Scholar 

  44. A. Taoufyq, V. Mauroy, T. Fiorido et al., J. Lumin. 215, 116619 (2019). https://doi.org/10.1016/j.jlumin.2019.116619

    Article  CAS  Google Scholar 

  45. X. Du, W. Huang, S. He et al., Ceram. Int. 44, 19402 (2018). https://doi.org/10.1016/j.ceramint.2018.07.174

    Article  CAS  Google Scholar 

  46. D.J. Park, T. Sekino, S. Tsukuda, A. Hayashi, T. Kusunose, S.-I. Tanaka, J. Solid State Chem. 184, 2695 (2011). https://doi.org/10.1016/j.jssc.2011.08.012

    Article  CAS  Google Scholar 

  47. C.N. Pangul, S.W. Anwane, S.B. Kondawar, Mater. Today Proc. 15, 464 (2019). https://doi.org/10.1016/j.matpr.2019.04.108

    Article  CAS  Google Scholar 

  48. C. Du, F. Lang, Y. Su, Z. Liu, J. Colloid Interface Sci. 394, 94 (2013). https://doi.org/10.1016/j.jcis.2012.11.012

    Article  CAS  Google Scholar 

  49. P.N. Medeiros, A.A.G. Santiago, E.A.C. Ferreira et al., J. Alloy. Compd. 747, 1078 (2018). https://doi.org/10.1016/j.jallcom.2018.03.090

    Article  CAS  Google Scholar 

  50. D. Kumar, B.P. Singh, M. Srivastava et al., J. Lumin. 203, 507 (2018). https://doi.org/10.1016/j.jlumin.2018.06.065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/PROCAD)—Finance Code 2013/2998/2014 and Capes Finance code 001. The authors thanks the financial support of the Brazilian research financing institution: CNPq No. 307546/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Andrade Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade Neto, N.F., Silva, J.M.P., Tranquilin, R.L. et al. Photoluminescent properties of Sm3+ and Tb3+ codoped CaWO4 nanoparticles obtained by a one-step sonochemical method. J Mater Sci: Mater Electron 31, 13261–13272 (2020). https://doi.org/10.1007/s10854-020-03878-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03878-7

Navigation