Skip to main content
Log in

Improved pyroelectric properties and domain structures via poling and depoling effects in Mn-doped PIN–PMN–PT single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The poling and depoling effects were investigated on the pyroelectric performance and the domain structures of Mn-doped PIN–PMN–PT (the abbreviation of the 0.15Pb(In1/2Nb1/2)–0.55Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 crystals doped with 1% manganese, nominal composition) single crystals to optimize the poling process. With the poling field up to 3Ec, the crystals can reach the best pyroelectric properties and the characteristic parameters are optimized as p = 9.39 × 10–4 Cm−2 K−1 and Fd = 25.7 × 10–5 Pa−1/2. The single domain state cannot be achieved with further increasing the electric field due to the pinned effect induced by the \(({\text{Mn}}^{{2 + }} )_{Ti}^{{{\prime \prime }}} - {\text{V}}_{O}^{{{ \cdot \cdot }}}\) dipoles and the internal stress field. Due to the enhanced thermal stability, the crystals increase the working temperature compared to the undoped PMN-PT crystals, reaching 100 °C, that is suitable for applications as the infrared devices. When the temperature is above 100 °C, the pyroelectric performance will deteriorate seriously due to the successive phase transitions from the rhombohedral ferroelectric phase to the tetragonal ferroelectric phase at TR–T, and to the cubic paraelectric phase at TC/Tm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002). https://doi.org/10.1016/S1350-4495(02)00140-8

    Article  Google Scholar 

  2. A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003). https://doi.org/10.1016/S0079-6727(02)00024-1

    Article  CAS  Google Scholar 

  3. R.W. Whatmore, Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335–1386 (1986). https://doi.org/10.1088/0034-4885/49/12/002

    Article  CAS  Google Scholar 

  4. E.H. Putley, The possibility of background limited pyroelectric detectors. Infrared Phys. 20, 149–156 (1980). https://doi.org/10.1016/0020-0891(80)90021-4

    Article  CAS  Google Scholar 

  5. O.P. Thakur, J.P. Singh, C. Prakash, P. Kishan, Modified lead-zirconate-titanate for pyroelectric sensors. Def. Sci. J. 57, 233–239 (2007)

    Article  CAS  Google Scholar 

  6. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014). https://doi.org/10.1039/C4EE01759E

    Article  Google Scholar 

  7. P. Felix, P. Gamot, P. Lacheau, Y. Raverdy, Pyroelectric, dielectric and thermal properties of TGS DTGS and TGFB. Ferroelectrics 17, 543–551 (1977). https://doi.org/10.1080/00150197808236779

    Article  Google Scholar 

  8. Y. Tang, X. Zhao, X. Wan, X. Feng, W. Jin, H. Luo, Composition, dc bias and temperature dependence of pyroelectric properties of 〈111〉-oriented (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 crystals. Mater. Sci. Eng. B 119, 71–74 (2005). https://doi.org/10.1016/j.mseb.2005.01.010

    Article  CAS  Google Scholar 

  9. X. Wan, X. Zhao, H. Luo, H.L.W. Chan, C.L. Choy, Dielectric and pyroelectric properties of <111>-oriented Fe-doped 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystals, J. Am. Ceram. Soc. 88 (2005) 3063–3066. https://doi.org/10.1111/j.1551-2916.2005.00585.x.

  10. P. Yu, Y. Tang, H. Luo, Fabrication, property and application of novel pyroelectric single crystals—PMN–PT. J. Electroceram. 24, 1–4 (2010). https://doi.org/10.1007/s10832-007-9360-7

    Article  CAS  Google Scholar 

  11. Z. Feng, X. Zhao, H. Luo, Large pyroelectric effect in relaxor-based ferroelectric Pb(Mg1/3 Nb2/3)O3–PbTiO3 single crystals. J. Am. Ceram. Soc. 89, 3437–3440 (2006). https://doi.org/10.1111/j.1551-2916.2006.01264.x

    Article  CAS  Google Scholar 

  12. Y. Tang, X. Zhao, X. Feng, W. Jin, H. Luo, Pyroelectric properties of [111]-oriented Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals. Appl. Phys. Lett. 86, 082901 (2005). https://doi.org/10.1063/1.1865337

    Article  CAS  Google Scholar 

  13. P. Yu, F. Wang, D. Zhou, W. Ge, X. Zhao, H. Luo, J. Sun, X. Meng, J. Chu, Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1∕2Nb1∕2)O3–Pb(Mg1∕3Nb2∕3)O3–PbTiO3 ternary single crystal. Appl. Phys. Lett. 92, 252907 (2008). https://doi.org/10.1063/1.2942378

    Article  CAS  Google Scholar 

  14. L. Liu, X. Wu, X. Zhao, X. Feng, W. Jing, H. Luo, Pyroelectric performances of rhombohedral 0.42Pb(In1/2Nb1/2)O3–0.3Pb(Mg1/3Nb2/3)O30.28PbTiO3 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, 2154–2158 (2010). https://doi.org/10.1109/TUFFC.2010.1672

    Article  Google Scholar 

  15. L. Liu, X. Li, X. Wu, Y. Wang, W. Di, D. Lin, X. Zhao, H. Luo, N. Neumann, Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 crystals for infrared detection applications. Appl. Phys. Lett. 95, 192903 (2009). https://doi.org/10.1063/1.3263139

    Article  CAS  Google Scholar 

  16. X. Li, X. Zhao, B. Ren, H. Luo, W. Ge, Z. Jiang, S. Zhang, Microstructure and dielectric relaxation of dipolar defects in Mn-doped (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals. Scr. Mater. 69, 377–380 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.018

    Article  CAS  Google Scholar 

  17. Y. Tang, L. Luo, Y. Jia, H. Luo, X. Zhao, H. Xu, D. Lin, J. Sun, X. Meng, J. Zhu, M. Es-Souni, Mn-doped 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 pyroelectric crystals for uncooled infrared focal plane arrays applications. Appl. Phys. Lett. 89, 162906 (2006). https://doi.org/10.1063/1.2363149

    Article  CAS  Google Scholar 

  18. Q. Xu, X. Zhao, W. Di, L. Li, L. Yang, X. Li, B. Ren, J. Jiao, H. Luo, L. Shi, Noise mechanisms investigation in pyroelectric infrared detectors based on Mn-doped Pb(Mg1/3 Nb2/3)O3–0.27PbTiO3 vs LiTaO3 single crystals. Infrared Phys. Technol. 67, 350–353 (2014). https://doi.org/10.1016/j.infrared.2014.07.027

    Article  CAS  Google Scholar 

  19. L. Yang, L. Li, X. Zhao, Q. Xu, J. Ma, S. Wang, X. Li, W. Di, H. Xu, H. Luo, Enhanced pyroelectric properties and application of tetragonal Mn-doped 0.29Pb(In1/2Nb1/2)O3–0.31Pb(Mg1/3Nb2/3)O3–0.40PbTiO3 ternary single crystals. J. Alloys Compd. 695, 760–764 (2017). https://doi.org/10.1016/j.jallcom.2016.07.314

    Article  CAS  Google Scholar 

  20. Y. Li, Y. Tang, J. Chen, X. Zhao, L. Yang, F. Wang, Z. Zeng, H. Luo, Enhanced pyroelectric properties and thermal stability of Mn-doped 0.29Pb(In1/2Nb1/2)O3–0.29Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 single crystals. Appl. Phys. Lett. 112, 172901 (2018). https://doi.org/10.1063/1.5024286

    Article  CAS  Google Scholar 

  21. L. Liu, X. Wu, S. Wang, W. Di, D. Lin, X. Zhao, H. Luo, Growth and pyroelectric properties of rhombohedral 0.21Pb(In1/2Nb1/2)O3–0.49Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ternary single crystals. J. Cryst. Growth. 318, 856–859 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.033

    Article  CAS  Google Scholar 

  22. H. Deng, H. Zhang, X. Zhao, C. Chen, X. Wang, X. Li, D. Lin, B. Ren, J. Jiao, H. Luo, Direct observation of monoclinic ferroelectric phase and domain switching process in (K0.25Na0.75)NbO3 single crystals. CrystEngComm 17, 2872–2877 (2015)

    Article  CAS  Google Scholar 

  23. Z. Feng, X. Zhao, H. Luo, Effect of poling field and temperature on dielectric and piezoelectric property of 〈001〉-oriented 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 crystals. Mater. Res. Bull. 41, 1133–1137 (2006). https://doi.org/10.1016/j.materresbull.2005.11.007

    Article  CAS  Google Scholar 

  24. Y. Wang, L. Chen, G. Yuan, H. Luo, J. Li, D. Viehland, Large field-induced-strain at high temperature in ternary ferroelectric crystals. Sci. Rep. 6, 35120 (2016). https://doi.org/10.1038/srep35120

    Article  CAS  Google Scholar 

  25. X. Liu, B. Fang, J. Deng, H. Deng, H. Yan, Q. Yue, J. Chen, X. Li, J. Ding, X. Zhao, H. Luo, Phase transition behavior and defect chemistry of [001]-oriented 0.15Pb(In1/2Nb1/2)O3–0.57Pb(Mg1/3Nb2/3)O3–0.28PbTiO3–Mn single crystals. J. Appl. Phys. 117, 244102 (2015). https://doi.org/10.1063/1.4922790

    Article  CAS  Google Scholar 

  26. F. Li, L. Wang, L. Jin, Z. Xu, S. Zhang, Achieving single domain relaxor-PT crystals by high temperature poling. CrystEngComm 16, 2892–2897 (2014). https://doi.org/10.1039/C3CE42330A

    Article  CAS  Google Scholar 

  27. R. Zhu, B. Fang, X. Zhao, S. Zhang, Z. Chen, J. Ding, H. Luo, Enhancing piezoelectric properties of high-Curie temperature PMN-PH-PT piezoelectric ceramics by citrate method. J. Alloys Compd. 735, 496–509 (2018). https://doi.org/10.1016/j.jallcom.2017.11.088

    Article  CAS  Google Scholar 

  28. R. Zhu, B. Fang, X. Zhao, S. Zhang, D. Wu, J. Ding, Ferroelectric phase transition and electrical properties of high-TC PMN-PH-PT ceramics prepared by partial oxalate route. J. Eur. Ceram. Soc. 38, 1463–1472 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.048

    Article  CAS  Google Scholar 

  29. W.J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954). https://doi.org/10.1103/PhysRev.95.690

    Article  CAS  Google Scholar 

  30. Y.-H. Shin, I. Grinberg, I.-W. Chen, A.M. Rappe, Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007). https://doi.org/10.1038/nature06165

    Article  CAS  Google Scholar 

  31. W.J. Merz, Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. J. Appl. Phys. 27, 938–943 (1956). https://doi.org/10.1063/1.1722518

    Article  CAS  Google Scholar 

  32. Q. Meng, M.-G. Han, J. Tao, G. Xu, D.O. Welch, Y. Zhu, Velocity of domain-wall motion during polarization reversal in ferroelectric thin films: Beyond Merz’s Law. Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.91.054104

    Article  Google Scholar 

  33. L. Li, X. Li, X. Zhao, B. Ren, Q. Xu, H. Xu, H. Luo, X. Li, X. Shao, Enhanced dielectric, pyroelectric and ferroelectric properties of Mn-doped 0.15Pb(In1/2Nb1/2)O3–0.55Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystals. J. Alloys Compd. 595, 120–124 (2014). https://doi.org/10.1016/j.jallcom.2014.01.128

    Article  CAS  Google Scholar 

  34. R. Zhu, J. Zhao, F. Liu, Z. Zhang, B. Fang, J. Chen, H. Xu, X. Wang, H. Luo, Achieving single domain in rhombohedral and tetragonal Mn-doped Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-PbTiO3 crystals for infrared detecting applications. J. Am. Ceram. Soc. 103, 2575–2586 (2020). https://doi.org/10.1111/jace.16944

    Article  CAS  Google Scholar 

  35. L. Luo, M. Dietze, C.-H. Solterbeck, H. Luo, M. Es-Souni, Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments. J. Appl. Phys. 114, 224112 (2013). https://doi.org/10.1063/1.4847975

    Article  CAS  Google Scholar 

  36. J. Zhao, J. Chen, Z. Zeng, Y. Li, X. Zhao, H. Luo, Polarization investigation of Mn-doped 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals for infrared detecting application. J. Appl. Phys. 124, 234101 (2018). https://doi.org/10.1063/1.5025506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2016YFC0301803 and 2016YFC0201102), the National Natural Science Foundation of China (Nos. 61634007, 11827808 and 51831010), and the key program of Fujian institute of Innovation (No. FJCXY18040205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenning Di, Xi’an Wang or Haosu Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Zhu, R., Lu, L. et al. Improved pyroelectric properties and domain structures via poling and depoling effects in Mn-doped PIN–PMN–PT single crystals. J Mater Sci: Mater Electron 31, 12317–12324 (2020). https://doi.org/10.1007/s10854-020-03777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03777-x

Navigation