Skip to main content

Advertisement

Log in

Effect of Nano-zirconia on Microstructure and Biological Behavior of Hydroxyapatite-Based Bone Scaffolds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research study, the effect of zirconia nanoparticles on the biological properties of the hydroxyapatite (HA) scaffolds was evaluated. The zirconia nanoparticles with various weight percentages of 5, 10, and 20 were mixed with hydroxyapatite powder using a ball-milling process. Then, they were cold pressed and heat-treated at 1150 °C. Scanning electron microscope and x-ray diffraction analysis were used to evaluate the morphology and phase analysis of the samples, respectively. The results of the microstructure and phase analysis revealed that some zirconia nanoparticles reacted with the HA during the sintering process, which besides the formation of the tertiary calcium phosphate and calcium zirconium phases, it resulted in creating some microporosities in the scaffold. The biological behavior of the samples was investigated by osteoblast-like cells. The results of the biological assessment demonstrated that the presence of the zirconia nanoparticles in the HA scaffold improved the biological behavior (cell attachment and cell proliferation). The HA specimen composed with 10 wt.% zirconia nanoparticles showed the highest bioactivity. In addition, the compressive strength of the HA sample composed of 10 wt.% zirconia nanoparticles was improved by 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dietmar W. Hutmacher, Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21(24), p 2529–2543

    Article  CAS  Google Scholar 

  2. J. Van der Stok, E.M. Van Lieshout, Y. El-Massoudi, G.H. Van Kralingen, and P. Patka, Bone Substitutes in the Netherlands–a Systematic Literature Review, Acta Biomater., 2011, 7(2), p 739–750

    Article  Google Scholar 

  3. Susmita Bose, Mangal Roy, and Amit Bandyopadhyay, Recent Advances in Bone Tissue Engineering Scaffolds, Trends Biotechnol., 2012, 30(10), p 546–554

    Article  CAS  Google Scholar 

  4. Lutz-Christian Gerhardt and Aldo R. Boccaccini, Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering, Materials, 2010, 3(7), p 3867–3910

    Article  CAS  Google Scholar 

  5. A.R. Vaccaro, The Role of the Osteoconductive Scaffold in Synthetic Bone Graft, Orthopedics, 2002, 25(5), p S571–S578

    Google Scholar 

  6. A.R. Vaccaro, K. Chiba, J.G. Heller, T.C. Patel, J.S. Thalgott, E. Truumees, J.S. Fischgrund, M.R. Craig, S.C. Berta, and J.C. Wang, Bone Grafting Alternatives in Spinal Surgery, Spine J., 2002, 2(3), p 206–215

    Article  Google Scholar 

  7. F.L. Valente, L.C. Santos, R.V. Sepúlveda, G.P. Gonçalves, R.B. Eleotério, E.C. Reis, and A.P. Borges, Hydroxyapatite-Lignin Composite as a Metallic Implant-Bone Tissue Osseointegration Improver: Experimental Study in Dogs, Ciência Rural., 2016, 46(2), p 324–329

    Article  Google Scholar 

  8. F.J. O’Brien, Biomaterials & Scaffolds for Tissue Engineering, Mater. Today, 2011, 14(3), p 88–95

    Article  Google Scholar 

  9. Betsy M. Chesnutt, Ann M. Viano, Youling Yuan, Yunzhi Yang, Teja Guda, Mark R. Appleford, Joo L. Ong, Warren O. Haggard, and Joel D. Bumgardner, Design and Characterization of a Novel Chitosan/Nanocrystalline Calcium Phosphate Composite Scaffold for Bone Regeneration, J. Biomed. Mater. Res., Part A, 2009, 88(2), p 491–502

    Article  Google Scholar 

  10. Betsy M. Chesnutt, Youling Yuan, Karyl Buddington, Warren O. Haggard, and Joel D. Bumgardner, Composite Chitosan/Nano-Hydroxyapatite Scaffolds Induce Osteocalcin Production by Osteoblasts In Vitro and Support Bone Formation In Vivo, Tissue Eng. Part A, 2009, 15(9), p 2571–2579

    Article  CAS  Google Scholar 

  11. S.S. Pazarlıoğlu, M. Berk, G. Küpeli, and D. Koçak, Sintering Effect on Mechanical Properties of Composites of Bovine Hydroxyapatite (BHA)–5%(Al2O3–TiO2), Usak Univ. J. Mater. Sci, 2012, 1(1), p 23–27

    Google Scholar 

  12. Mehrnaz Salarian, William Z. Xu, Zhiqiang Wang, Tsun-Kong Sham, and Paul A. Charpentier, Hydroxyapatite–TiO2-based Nanocomposites Synthesized in Supercritical CO2 for Bone Tissue Engineering: Physical and Mechanical Properties, ACS Appl. Mater. Interfaces., 2014, 6(19), p 16918–16931

    Article  CAS  Google Scholar 

  13. Fwu-Hsing Liu, Yung-Kang Shen, and Jeou-Long Lee, Selective Laser Sintering of a Hydroxyapatite-Silica Scaffold on Cultured MG63 Osteoblasts In Vitro, Int. J. Precision Eng. Manuf., 2012, 13(3), p 439–444

    Article  Google Scholar 

  14. A. Kruse, R.E. Jung, F. Nicholls, R.A. Zwahlen, C.H.F. Hämmerle, and F.E. Weber, Bone Regeneration in the Presence of a Synthetic Hydroxyapatite/Silica oxide-Based and a Xenogenic Hydroxyapatite-Based Bone Substitute Material, Clin. Oral Implant Res., 2011, 22(5), p 506–511

    Article  CAS  Google Scholar 

  15. Daniel J. Hickey, Batur Ercan, Linlin Sun, and Thomas J. Webster, Adding MgO Nanoparticles to Hydroxyapatite–PLLA Nanocomposites for Improved Bone Tissue Engineering Applications, Acta Biomater., 2015, 14, p 175–184

    Article  CAS  Google Scholar 

  16. Pei Feng, Pingpin Wei, Cijun Shuai, and Shuping Peng, Characterization of Mechanical And Biological Properties of 3-D Scaffolds Reinforced with Zinc Oxide For Bone Tissue Engineering, PLoS ONE, 2014, 9(1), p e87755

    Article  Google Scholar 

  17. F. Barrère, C.A. van Blitterswijk, and K. de Groot, Bone Regeneration: Molecular and Cellular Interactions with Calcium Phosphate Ceramics, Int. J. Nanomed., 2006, 1(3), p 317

    Google Scholar 

  18. G.G. Walmsley, A. McArdle, R. Tevlin, A. Momeni, D. Atashroo, M.S. Hu, A.H. Feroze, V.W. Wong, P.H. Lorenz, M.T. Longaker, and D.C. Wan, Nanotechnology in Bone Tissue Engineering, Nanomed. Nanotechnol. Biol. Med., 2015, 11(5), p 1253–1263

    Article  CAS  Google Scholar 

  19. Jane Bramhill, Sukunya Ross, and Gareth Ross, Bioactive Nanocomposites for Tissue Repair and Regeneration: a Review, Int. J. Environ. Res. Public Health, 2017, 14(1), p 66

    Article  Google Scholar 

  20. S. Hesaraki, H. Nazarian, M. Pourbaghi-Masouleh, and S. Borhan, Comparative Study of Mesenchymal Stem Cells Osteogenic Differentiation on Low-Temperature Biomineralized Nanocrystalline Carbonated Hydroxyapatite and Sintered Hydroxyapatite, J Biomed Mater Res Part B Appl Biomater, 2014, 102(1), p 108–118

    Article  Google Scholar 

  21. H. Maleki-Ghaleh, E. Aghaie, A. Nadernezhad, M. Zargarzadeh, A. Khakzad, M.S. Shakeri, Y.B. Khosrowshahi, and M.H. Siadati, Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells, J. Mater. Eng. Perform., 2016, 25(6), p 2331–2339

    Article  CAS  Google Scholar 

  22. M. Tallawi, E. Rosellini, N. Barbani, M.G. Cascone, R. Rai, G. Saint-Pierre, and A.R. Boccaccini, Strategies for the Chemical and Biological Functionalization of Scaffolds For Cardiac Tissue Engineering: a Review, J. Royal Soc. Interface., 2015, 12(108), p 20150254

    Article  Google Scholar 

  23. D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. Bastida-Hidalgo, and S.H. Cartmell, Polarization of Hydroxyapatite: Influence on Osteoblast Cell Proliferation, Acta Biomater., 2010, 6(4), p 1549–1554

    Article  CAS  Google Scholar 

  24. H. Kuwahara, N. Mazaki, M. Takahashi, T. Watanabe, X. Yang, and T. Aizawa, Mechanical Properties of Bulk Sintered Titanium Nitride Ceramics, Mater. Sci. Eng., A, 2001, 319, p 687–691

    Article  Google Scholar 

  25. Ayako Oyane, Hyun-Min Kim, Takuo Furuya, Tadashi Kokubo, Toshiki Miyazaki, and Takashi Nakamura, Preparation and Assessment of Revised Simulated Body Fluids, J. Biomed. Mater. Res. Part A Official J. Soc. Biomater. Jpn. Soc. Biomater. Australian Soc. Biomater. Korean Soc. Biomater., 2003, 65(2), p 188–195

    Google Scholar 

  26. Z.E. Erkmen, Y. Genc, and F.N. Oktar, Microstructural and Mechanical Properties of Hydroxyapatite–Zirconia Composites, J. Am. Ceram. Soc., 2007, 90(9), p 2885–2892

    Article  CAS  Google Scholar 

  27. Yun-Mo Sung, Young-Keun Shin, and Jae-Jun Ryu, Preparation of Hydroxyapatite/Zirconia Bioceramic Nanocomposites for Orthopaedic and Dental Prosthesis Applications, Nanotechnology, 2007, 18(6), p 065602

    Article  Google Scholar 

  28. He Li, Yongsheng Liu, Yansong Liu, Qingfeng Zeng, Hu Kehui, Lu Zhigang, and Jingjing Liang, Effect of Sintering Temperature in Argon Atmosphere on Microstructure and Properties of 3D Printed Alumina Ceramic Cores, J. Adv. Ceram., 2020, 9, p 220–231

    Article  CAS  Google Scholar 

  29. Edward S. Ahn, Nathaniel J. Gleason, and Jackie Y. Ying, The Effect Of Zirconia Reinforcing Agents on the Microstructure and Mechanical Properties of Hydroxyapatite-Based Nanocomposites, J. Am. Ceram. Soc., 2005, 88(12), p 3374–3379

    Article  CAS  Google Scholar 

  30. Zafer Evis, Reactions in Hydroxylapatite–Zirconia Composites, Ceram. Int., 2007, 33(6), p 987–991

    Article  CAS  Google Scholar 

  31. Subhadip Bodhak, Susmita Bose, and Amit Bandyopadhyay, Bone Cell–Material Interactions on Metal-Ion Doped Polarized Hydroxyapatite, Mater. Sci. Eng., C, 2011, 31(4), p 755–761

    Article  CAS  Google Scholar 

  32. E. Crucean and B. Rand, The Isoelectric Point of ZrO2, Trans. J. British Ceram. Soc., 1979, 78(5), p 96–98

    CAS  Google Scholar 

  33. J. Ma, C.H. Liang, L.B. Kong, and C. Wang, Colloidal Characterization and Electrophoretic Deposition of Hydroxyapatite on Titanium Substrate, J. Mater. Sci. Mater. Med., 2003, 14(9), p 797–801

    Article  CAS  Google Scholar 

  34. Vuk Uskoković and MWu Victoria, Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering, Materials, 2016, 9(6), p 434

    Article  Google Scholar 

  35. Hossein Maleki-Ghaleh and Jafar Khalil-Allafi, Characterization, Mechanical and In Vitro Biological Behavior of Hydroxyapatite–Titanium–Carbon Nanotube Composite Coatings Deposited on NiTi Alloy by Electrophoretic Deposition, Surf. Coat. Technol., 2019, 363, p 179–190

    Article  CAS  Google Scholar 

  36. Hossein Maleki-Ghaleh and Jafar Khalil-Allafi, Effect of Hydroxyapatite-Titanium-MWCNTs Composite Coating Fabricated by Electrophoretic Deposition on Corrosion and Cellular Behavior of NiTi Alloy, Mater. Corros., 2019, 70(11), p 2128–2138

    Article  CAS  Google Scholar 

  37. J. Ye, W. Ai, F. Zhang, X. Zhu, G. Shu, L. Wang, P. Gao, Q. Xi, Y. Zhang, Q. Jiang, and S. Wang, Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium Is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway, Stem Cells Int., 2016, 6570671, p 1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Maleki-Ghaleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki-Ghaleh, H., Khalil-Allafi, J., Keikhosravani, P. et al. Effect of Nano-zirconia on Microstructure and Biological Behavior of Hydroxyapatite-Based Bone Scaffolds. J. of Materi Eng and Perform 29, 4412–4420 (2020). https://doi.org/10.1007/s11665-020-04927-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04927-2

Keywords

Navigation