Skip to main content
Log in

Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, an enhanced random vector functional link network (RVFL) algorithm was employed to predict kerf quality indices during CO2 laser cutting of polymethylmethacrylate (PMMA) sheets. In the proposed model, the equilibrium optimizer (EO) is used to augment the prediction capability of RVFL via selecting the optimal values of RVFL parameters. The predicting model includes four input variables: gas pressure, sheet thickness, laser power, and cutting speed, and five kerf quality indices: rough zone ratio, widths of up and down heat affected zones, maximum surface roughness, and kerf taper angle. The experiments were designed using Taguchi L18 orthogonal array. The kerf surface contains three main zones: rough, transient, and smooth zones. The results of conventional RVFL as well as modified RVFL-EO algorithms were compared with experimental ones. Seven statistical criteria were used to assess the performance of the proposed algorithms. The results indicate that the RVFL-EO model has the predicting ability to estimate the laser-cutting characteristics of PMMA sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alizadeh, A., & Omrani, H. (2019). An integrated multi response Taguchi- neural network- robust data envelopment analysis model for CO2 laser cutting. Measurement, 131, 69–78. https://doi.org/10.1016/j.measurement.2018.08.054.

    Article  Google Scholar 

  • Babikir, H. A., Elaziz, M. A., Elsheikh, A. H., Showaib, E. A., Elhadary, M., Wu, D., et al. (2019). Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alexandria Engineering Journal, 58(3), 1077–1087. https://doi.org/10.1016/j.aej.2019.09.010.

    Article  Google Scholar 

  • Bai, H. Z. (2004). Technology SMMJJoMP Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. Journal of Materials Processing Technology, 146(2), 188–192.

    Article  Google Scholar 

  • Bao, T., Wang, J., & Yao, Y. J. S. C. T. S. (2010). A fiber optic sensor for detecting and monitoring cracks in concrete structures. Science China Technological Sciences, 53(11), 3045–3050. https://doi.org/10.1007/s11431-010-4111-4.

    Article  Google Scholar 

  • Caiazzo, F., Curcio, F., & Daurelio, G. (2005). Technology FMCMJJoMP Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam. Journal of Materials Processing Technology, 159(3), 279–285.

    Article  Google Scholar 

  • Chaki, S., Bathe, R. N., Ghosal, S., & Padmanabham, G. (2018). Multi-objective optimisation of pulsed Nd:YAG laser cutting process using integrated ANN–NSGAII model. Journal of Intelligent Manufacturing, 29(1), 175–190. https://doi.org/10.1007/s10845-015-1100-2.

    Article  Google Scholar 

  • Chien, W.-T., & Hou, S.-C. (2007). Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method. The International Journal of Advanced Manufacturing Technology, 33(3–4), 308–316.

    Article  Google Scholar 

  • Choudhury, I. A., & Shirley, S. (2010). Laser cutting of polymeric materials: An experimental investigation. Optics & Laser Technology, 42(3), 503–508.

    Article  Google Scholar 

  • D’Addona, D. M., Genna, S., Leone, C., & Matarazzo, D. (2016). Prediction of poly-methyl-methacrylate laser milling process characteristics based on neural networks and fuzzy data. Procedia CIRP, 41, 981–986. https://doi.org/10.1016/j.procir.2016.01.029.

    Article  Google Scholar 

  • Davim, J. P. (2013). Nontraditional machining processes. In Manufacturing process selection handbook, pp. 205–226

  • Davim, J. P., Barricas, N., Conceicao, M., & Oliveira, C. (2008a). Some experimental studies on CO2 laser cutting quality of polymeric materials. Journal of Materials Processing Technology, 198(1–3), 99–104.

    Article  Google Scholar 

  • Davim, J. P., Oliveira, C., Barricas, N., & Conceição, M. (2008b). Evaluation of cutting quality of PMMA using CO2 lasers. The International Journal of Advanced Manufacturing Technology, 35(9), 875–879. https://doi.org/10.1007/s00170-006-0766-1.

    Article  Google Scholar 

  • Dubey, A. K., & Yadava, V. (2008a). Laser beam machining: A review. International Journal of Machine Tools and Manufacture, 48(6), 609–628.

    Article  Google Scholar 

  • Dubey, A. K., & Yadava, V. (2008b). Multi-objective optimization of Nd: YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Optics and Lasers in Engineering, 46(2), 124–132.

    Article  Google Scholar 

  • Elaziz, M. A., Elsheikh, A. H., & Sharshir, S. W. (2019). Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system. International Journal of Refrigeration, 102, 47–54. https://doi.org/10.1016/j.ijrefrig.2019.03.009.

    Article  Google Scholar 

  • Elsheikh, A. H., Deng, W., & Showaib, E. A. (2019a). Improving laser cutting quality of polymethylmethacrylate sheet: Experimental investigation and optimization. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2019.11.059.

    Article  Google Scholar 

  • Elsheikh, A. H., Guo, J., Huang, Y., Ji, J., & Lee, K.-M. (2018). Temperature field sensing of a thin-wall component during machining: Numerical and experimental investigations. International Journal of Heat and Mass Transfer, 126, 935–945. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.006.

    Article  Google Scholar 

  • Elsheikh, A. H., Sharshir, S. W., Abd Elaziz, M., Kabeel, A. E., Guilan, W., & Haiou, Z. (2019b). Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy, 180, 622–639. https://doi.org/10.1016/j.solener.2019.01.037.

    Article  Google Scholar 

  • Elsheikh, A. H., Sharshir, S. W., Ismail, A. S., Sathyamurthy, R., Abdelhamid, T., Edreis, E. M. A., et al. (2020). An artificial neural network based approach for prediction the thermal conductivity of nanofluids. SN Applied Sciences, 2(2), 235. https://doi.org/10.1007/s42452-019-1610-1.

    Article  Google Scholar 

  • Elsheikh, A., Showaib, E., & Asar, A. (2013). Artificial neural network based forward kinematics solution for planar parallel manipulators passing through singular configuration. Advances in Robotics & Automation, 2(106), 2.

    Google Scholar 

  • Ergur, H. S., & Oysal, Y. (2015). Estimation of cutting speed in abrasive water jet using an adaptive wavelet neural network. Journal of Intelligent Manufacturing, 26(2), 403–413. https://doi.org/10.1007/s10845-013-0798-y.

    Article  Google Scholar 

  • Essa, F. A., Abd Elaziz, M., & Elsheikh, A. H. (2020). An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Applied Thermal Engineering, 170, 115020. https://doi.org/10.1016/j.applthermaleng.2020.115020.

    Article  Google Scholar 

  • Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2019.105190.

    Article  Google Scholar 

  • Gautam, G. D., & Pandey, A. K. (2018). Teaching learning algorithm based optimization of kerf deviations in pulsed Nd: YAG laser cutting of Kevlar-29 composite laminates. Infrared Physics & Technology, 89, 203–217.

    Article  Google Scholar 

  • Gonzalez-Val, C., Pallas, A., Panadeiro, V., & Rodriguez, A. (2020). A convolutional approach to quality monitoring for laser manufacturing. Journal of Intelligent Manufacturing, 31(3), 789–795. https://doi.org/10.1007/s10845-019-01495-8.

    Article  Google Scholar 

  • Huang, M., Chen, K.-S., & Hung, Y. (2002). Integrated process capability analysis with an application in backlight module. Microelectronics Reliability, 42(12), 2009–2014.

    Article  Google Scholar 

  • Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2020). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 31(4), 953–966. https://doi.org/10.1007/s10845-019-01488-7.

    Article  Google Scholar 

  • Jagadish, Bhowmik S., & Ray, A. (2019). Prediction of surface roughness quality of green abrasive water jet machining: A soft computing approach. Journal of Intelligent Manufacturing, 30(8), 2965–2979. https://doi.org/10.1007/s10845-015-1169-7.

    Article  Google Scholar 

  • Kim, G. (2005). A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU). European Polymer Journal, 41(8), 1729–1737.

    Article  Google Scholar 

  • Kurt, M., Kaynak, Y., Bagci, E., Demirer, H., & Kurt, M. (2009). Dimensional analyses and surface quality of the laser cutting process for engineering plastics. The International Journal of Advanced Manufacturing Technology, 41(3–4), 259–267.

    Article  Google Scholar 

  • Leal-Junior, A. G., Frizera, A., Theodosiou, A., Díaz, C., Jimenez, M., Min, R., et al. (2019). Plane-by-plane written, low-loss polymer optical fiber bragg grating arrays for multiparameter sensing in a smart walker. IEEE Sensors Journal, 19(20), 9221–9228.

    Article  Google Scholar 

  • Leal-Junior, A., Theodosiou, A., Díaz, C., Marques, C., Pontes, M., Kalli, K., et al. (2018a). Fiber Bragg Gratings in CYTOP fibers embedded in a 3D-printed flexible support for assessment of human–robot interaction forces. Materials, 11(11), 2305.

    Article  Google Scholar 

  • Leal-Junior, A. G., Theodosiou, A., Marques, C., Pontes, M. J., Kalli, K., & Frizera, A. (2018b). Compensation method for temperature cross-sensitivity in transverse force applications with FBG sensors in POFs. Journal of Lightwave Technology, 36(17), 3660–3665.

    Article  Google Scholar 

  • Lum, K., Ng, S., & Black, I. (2000). CO2 laser cutting of MDF: 1. Determination of process parameter settings. Optics & Laser Technology, 32(1), 67–76.

    Article  Google Scholar 

  • Mathew, J., Goswami, G., Ramakrishnan, N., & Naik, N. (1999). Parametric studies on pulsed Nd: YAG laser cutting of carbon fibre reinforced plastic composites. Journal of Materials Processing Technology, 89, 198–203.

    Article  Google Scholar 

  • Prakash, S., & Kumar, S. (2017). Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA. Precision Engineering, 49, 220–234. https://doi.org/10.1016/j.precisioneng.2017.02.010.

    Article  Google Scholar 

  • Prakash, S., & Kumar, S. (2018). Pulse smearing and profile generation in CO2 laser micromachining on PMMA via raster scanning. Journal of Manufacturing Processes, 31, 116–123. https://doi.org/10.1016/j.jmapro.2017.11.003.

    Article  Google Scholar 

  • Rao, R., & Yadava, V. (2009). Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Optics & Laser Technology, 41(8), 922–930.

    Article  Google Scholar 

  • Salman, Kh, Elsheikh, A. H., Ashham, M., Ali, M. K. A., Rashad, M., & Haiou, Z. (2019). Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 349. https://doi.org/10.1007/s40430-019-1846-0.

    Article  Google Scholar 

  • Sharma, A., & Yadava, V. (2011). Optimization of cut quality characteristics during Nd: YAG laser straight cutting of Ni-based superalloy thin sheet using grey relational analysis with entropy measurement. Materials and Manufacturing Processes, 26(12), 1522–1529.

    Article  Google Scholar 

  • Sharma, A., Yadava, V., & Rao, R. (2010). Optimization of kerf quality characteristics during Nd: YAG laser cutting of nickel based superalloy sheet for straight and curved cut profiles. Optics and Lasers in Engineering, 48(9), 915–925.

    Article  Google Scholar 

  • Shehabeldeen, T. A., Elaziz, M. A., Elsheikh, A. H., Hassan, O. F., Yin, Y., Ji, X., et al. (2020). A novel method for predicting tensile strength of friction stir welded AA6061 aluminium alloy joints based on hybrid random vector functional link and henry gas solubility optimization. IEEE Access, 8, 79896–79907. https://doi.org/10.1109/ACCESS.2020.2990137.

    Article  Google Scholar 

  • Shehabeldeen, T. A., Elaziz, M. A., Elsheikh, A. H., & Zhou, J. (2019). Modeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizer. Journal of Materials Research and Technology, 8(6), 5882–5892. https://doi.org/10.1016/j.jmrt.2019.09.060.

    Article  Google Scholar 

  • Showaib, E. A., & Elsheikh, A. H. (2020). Effect of surface preparation on the strength of vibration welded butt joint made from PBT composite. Polymer Testing, 83, 106319. https://doi.org/10.1016/j.polymertesting.2019.106319.

    Article  Google Scholar 

  • Shrivastava, P. K., & Pandey, A. K. (2018). Parametric optimization of multiple quality characteristics in laser cutting of Inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm. Infrared Physics & Technology, 91, 220–232. https://doi.org/10.1016/j.infrared.2018.04.013.

    Article  Google Scholar 

  • Volpe, A., Trotta, G., Krishnan, U., & Ancona, A. (2019). Prediction model of the depth of the femtosecond laser micro-milling of PMMA. Optics & Laser Technology, 120, 105713. https://doi.org/10.1016/j.optlastec.2019.105713.

    Article  Google Scholar 

  • Wang, X., Li, Z., Chen, T., Lok, B., & Low, D. (2008). 355 nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates. Optics and Lasers in Engineering, 46(5), 404–409.

    Article  Google Scholar 

  • Zhang, P.-B., & Yang, Z.-X. (2020). A new learning paradigm for random vector functional-link network: RVFL+. Neural Networks, 122, 94–105. https://doi.org/10.1016/j.neunet.2019.09.039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ammar H. Elsheikh or Jianxin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, A.H., Shehabeldeen, T.A., Zhou, J. et al. Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. J Intell Manuf 32, 1377–1388 (2021). https://doi.org/10.1007/s10845-020-01617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01617-7

Keywords

Navigation