Skip to main content
Log in

Tuning of Structural Transition Pressure and Electronic Properties of Alkaline Earth Chalcogenides by Isoelectronic Substitution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CaTe exhibits Dirac-like linear dispersion in a simple cubic CsCl-type structure which is stable above pressure of 33 GPa. In the present paper, we have studied all the alkaline earth metal chalcogenides to check for the possibility of a structural transition pressure (Ps) below 33 GPa and also exhibiting Dirac-like linear dispersions as in CaTe. Our results show that a larger cation or anion increases the unit cell volume and lowers the Ps and vice versa. Although the Ps can be lowered by isoelectronic substitution, the Dirac-like electronic band dispersion around Ps is exhibited only by SrTe at 17 GPa which is almost half the Ps for CaTe. Interestingly, our study finds that in absence of spin-orbit interaction all studied alkaline chalcogenides exhibit Dirac-like dispersions at pressures ranging from 17 GPa for SrTe to 650 GPa for CaS, whereas a few retain Dirac-like dispersion even under the effect of spin-orbit interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.O. Wehling and A.M. Black-Schaffer, Adv. Phys. 63, 1 (2014).

    CAS  Google Scholar 

  2. C.G. De Oliveira and J. Tiomno, I. N. Cimento 24, 672 (1962).

    Google Scholar 

  3. P.R. Wallace, Phys. Rev. 71, 622 (1947).

    CAS  Google Scholar 

  4. K. Geim, Konstantin S. Novoselov, Nature Materials 6, 183 (2007).

    CAS  Google Scholar 

  5. Q.D. Gibson, L.M. Schoop, L. Muechler, L.S. Xie, and M. Hirschberger, Phys. Rev. B 91, 205128 (2015).

    Google Scholar 

  6. L. Zdanowicz, J.C. Portal, and W. Zdanowicz, Shubnikov-de Haas effect in amorphous Cd3As2 (Berlin: Springer, 1983).

    Google Scholar 

  7. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.J. Hasan, Phys. Rev. Lett. 113, 256403 (2014).

    Google Scholar 

  8. D.D. Narayan, S. Sante, and S. Picozzi, Sanvito. Phys. Rev. Lett. 113, 256403 (2014).

    Google Scholar 

  9. Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.K. Mo, Z.X. Shen, Z. Fang, X. Dai, and Z. Hussain, Y. L. Chen 343, 864 (2014).

    CAS  Google Scholar 

  10. Z.K. Liu, J. Jiang, B. Zhou, Z.J. Wang, Y. Zhang, H.M. Weng, D. Prabhakaran, S.K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z.X. Shen, D.L. Feng, Z. Hussain, and Y.L. Chen, Nat. Mater. 13, 677 (2014).

    CAS  Google Scholar 

  11. Y. Du, B. Wan, D. Wang, L. Sheng, C.G. Duan, and X. Wan, Scientific reports 5, 14423 (2015).

    CAS  Google Scholar 

  12. Z. Wang, Y. Sun, X. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

    Google Scholar 

  13. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).

    Google Scholar 

  14. C. Le, S. Qin, X. Wu, X. Dai, P. Fu, C. Fang, and J. Hu, Phys. Rev. B 96, 115121 (2017).

    Google Scholar 

  15. W. Cao, P. Tang, Y. Xu, J. Wu, B.L. Gu, and W. Duan, Phys. Rev. B 96, 115203 (2017).

    Google Scholar 

  16. C. Chen, X. Xu, J. Jiang, S.-C. Wu, Y.P. Qi, L.X. Yang, M.X. Wang, Y. Sun, N.B.M. Schröter, H.F. Yang, L.M. Schoop, Y.Y. Lv, J. Zhou, Y.B. Chen, S.H. Yao, M.H. Lu, Y.F. Chen, C. Felser, B.H. Yan, Z.K. Liu, and Y.L. Chen, Phys. Rev. B 95, 125126 (2017).

    Google Scholar 

  17. D. Takane, Z. Wang, S. Souma, K. Nakayama, C.X. Trang, T. Sato, T. Takahashi, and Y. Ando, Phys. Rev. B 94, 121108(R) (2017).

    Google Scholar 

  18. G. Bian, T.R. Chang, R. Sankar, S.Y. Xu, H. Zheng, T. Neupret, C.K. Chiu, S.M. Huang, G. Chang, I. Belopolski, D.S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.C. Lee, H.T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M.Z. Hasan, Nature Communications 7, 10556 (2016).

    CAS  Google Scholar 

  19. P. Chen, X. Wang, C. Dejoie, M.H. Wong, J.A. Hlevyack, H. Ryu, H.Y. Kee, N. Tamura, M.Y. Chou, Z. Hussain, S.K. Mo, and T.C. Chiang, Phys. Rev. Lett. 118, 146402 (2017).

    Google Scholar 

  20. Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, Y. Toda, S. Matsuishi, and H. Hosono, Phys. Rev. B 96, 155109 (2017).

    Google Scholar 

  21. R.Y. Chen, S.J. Zhang, J.A. Schneeloch, C. Zhang, Q. Li, G.D. Gu, and N.L. Wang, Phys. Rev. B 92, 075107 (2015).

    Google Scholar 

  22. Y. Du, F. Tang, D. Wang, L. Sheng, E.J. Kan, C.G. Duan, S.Y. Savrasov, and X. Wan, NPJ Quantum Materials 2, 3 (2017).

    Google Scholar 

  23. J.H. Hao, Z.Q. Wu, Z. Wang, Q.H. Jin, B.H. Li, and D.T. Ding, Physica B 404, 3671 (2009).

    CAS  Google Scholar 

  24. J. Kumar, P. Kapoor, and P.K. Ahluwalia, J. Electron. Mater. 44, 3215 (2015).

    CAS  Google Scholar 

  25. L.M. Schoop, M.N. Ali, C. Straber, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S.S.P. Parkin, B.V. Lotsch, and C.R. Ast, Nature communications 7, 11696 (2016).

    CAS  Google Scholar 

  26. N.P. Armitage, E.J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  27. Y. Han, R. Khenata, T. Yang, and X. Wang, Results in Physics 13, 102301 (2019).

    Google Scholar 

  28. T. Yang, R. Khenata, and H. Khachai, Results in Physics 13, 102331 (2019).

    Google Scholar 

  29. Z. Charifi, H. Baaziz, and F. Hassan, J. Phys.: Condens. Matter 17, 4083 (2005).

    CAS  Google Scholar 

  30. H. Luo, R.G. Greene, K. Ghandehari, T. Li, and A.L. Ruoff, Phys. Rev. B 50, 16232 (1994).

    CAS  Google Scholar 

  31. S. Ferahtia, S. Saib, and N. Bouarissa, Results in Physics 15, 102626 (2019).

    Google Scholar 

  32. K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch- Draxl, ELK. http://elk.sourceforge.Net (2016)

  33. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  34. P. Vinet, J.H. Rose, and J. Ferrante, J. Phys.: Condens. Matter 1, 1941 (1989).

    CAS  Google Scholar 

  35. S. Boucenna, Y. Medkour, L. Louail, M. Boucenna, A. Hachemi, and A. Roumili, Comput. Mater. Sci. 68, 325 (2013).

    CAS  Google Scholar 

  36. K. Kholiya, S. Verma, and R.K. Gupta, Physica B 405, 2683 (2010).

    CAS  Google Scholar 

  37. H. Khachai, R. Khenata, A. Haddou, A. Bouhemadou, A. Boukortt, B. Soudini, F. Boukabrine, and H. Abid, Physics Procedia 2, 921 (2009).

    CAS  Google Scholar 

  38. B.S. Banu, G. Kaplana, B. Palanivel, P. Shenbagaraman, M. Rajagopalan, and M. Yousuf, Int. J. Mod. Phys. B 12, 1709 (1998).

    Google Scholar 

  39. M. Manal, Abdus Salam. Results in Physics 10, 934 (2018).

    Google Scholar 

  40. H.G. Zimmer, H. Winzen, and K. Syassen, Phys. Rev. B 32, 4066 (1985).

    CAS  Google Scholar 

  41. D. Rached, M. Rabah, N. Benkhettou, B. Soudini, and H. Abid, Phys. Stat. Sol. B 241, 2529 (2004).

    CAS  Google Scholar 

  42. R. Khenata, H. Baltache, M. Rérat, M. Driz, M. Sahnoun, B. Bouhafs, and B. Abbar, Physica B 339, 208 (2003).

    CAS  Google Scholar 

  43. K. Syassen, Phys. Stat. Sol. (a) 91, 11 (1985).

    CAS  Google Scholar 

  44. H. Luo, R.G. Greene, and A.L. Ruoff, Phys. Rev. B 49, 15341 (1994).

    CAS  Google Scholar 

  45. B.S. Banu, M. Rajagopalan, B. Palanivel, G. Kaplana, and P. Shenbagaraman, J. Low Temp. Phys. 112, 211 (1998).

    CAS  Google Scholar 

  46. R. Bouhemadou, F. Khenata, M. Zegrar, H. Sahnoun, and A.H. Baltache, Reshak. Comput. Mater. Sci. 38, 263 (2006).

    CAS  Google Scholar 

  47. T.A. Grzybowski and A.L. Ruoff, Phys. Rev. Lett. 53, 489 (1984).

    CAS  Google Scholar 

  48. G. Kalpana, B. Palanivel, and M. Rajagopalan, Phys. Rev. B 50, 12318 (1994).

    CAS  Google Scholar 

  49. E. Tuncel, K. Colakoglu, E. Deligoz, and Y.O. Ciftci, J. Phys. Chem. Solids 70, 371 (2009).

    CAS  Google Scholar 

  50. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S.D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L.M. Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  51. H. Ebert, The Munich SPR-KKR package, version 6.3. http://ebert.cup.unimuenchen.de/SPRKKR (2005)

  52. K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, and J. Evers, Phys. Rev. B 35, 4052 (1987).

    CAS  Google Scholar 

  53. H.Y. Jia, S. Jhang, X. Hong, C. Jin, and S. Li, NPJ Qunatum Materials 1, 16014 (2016).

    Google Scholar 

  54. G.Q. Lin, H. Gong, and P. Wu, Phys. Rev. B 71, 085203 (2005).

    Google Scholar 

  55. H. Akbarzadeh, M. Dadsetani, and M. Mehrani, Comput. Mater. Sci. 17, 81 (2000).

    CAS  Google Scholar 

  56. G. Gokoglu, J. Phys. Chem. Solids 69, 2924 (2008).

    CAS  Google Scholar 

  57. P. Bhardwaj, S. Singh, and N.K. Gaur, Cent. Euro. J. Phys. 6, 223 (2008).

    CAS  Google Scholar 

  58. S.H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985).

    CAS  Google Scholar 

  59. B. Jayaraman and R.G. Batlogg, Maines. Phys. Rev. B 26, 3347 (1982).

    CAS  Google Scholar 

  60. S.T. Weir, Y.K. Vohra, and A.L. Ruboff, Phys. Rev. B 35, 874 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, A., Kumari, A. & Kumar, J. Tuning of Structural Transition Pressure and Electronic Properties of Alkaline Earth Chalcogenides by Isoelectronic Substitution. J. Electron. Mater. 49, 4773–4784 (2020). https://doi.org/10.1007/s11664-020-08196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08196-6

Keywords

Navigation